Optics and Precision Engineering, Volume. 32, Issue 1, 12(2024)
Passive compressive ghost imaging with low rank clustering
[1] STREKALOV D V, SERGIENKO A V, KLYSHKO D N et al. Observation of two-photon “ghost” interference and diffraction[J]. Physical Review Letters, 74, 3600-3603(1995).
[2] PITTMAN T B, SHIH Y H, STREKALOV D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995).
[3] BENNINK R S, BENTLEY S J, BOYD R W. “two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).
[4] SCARCELLI G, BERARDI V, SHIH Y. Quantum interference approach to two-photon correlation phenomena of chaotic light[J]. Journal of Modern Optics, 53, 2279-2292(2006).
[5] SHAPIRO J H. Computational ghost imaging[J]. Physical Review A, 78(2008).
[6] LIU Z T, TAN S Y, WU J R et al. Spectral camera based on ghost imaging via sparsity constraints[J]. Scientific Reports, 6, 25718(2016).
[7] [7] 孙鸣捷, 闫崧明, 王思源. 鬼成像和单像素成像技术中的重建算法[J]. 激光与光电子学进展, 2022, 59(2): 0200001. doi: 10.3788/LOP202259.0200001SUNM J, YANS M, WANGS Y. Reconstruction algorithm in ghost imaging and single pixel imaging technology[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0200001.(in Chinese). doi: 10.3788/LOP202259.0200001
[8] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 53, 4655-4666(2007).
[9] NEEDELL D, VERSHYNIN R. Greedy signal recovery and uncertainty principles[C], 6814, 139-150(2008).
[10] CHEN S S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 43, 129-159(2001).
[11] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2, 183-202(2009).
[12] CANDES E J, TAO T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 52, 5406-5425(2006).
[13] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 52, 489-509(2006).
[14] BIOUCAS-DIAS J M, FIGUEIREDO M A T. Two-step algorithms for linear inverse problems with non-quadratic regularization[C](2007).
[15] BECKER S, BOBIN J, CANDÈS E J. NESTA: a fast and accurate first-order method for sparse recovery[J]. SIAM Journal on Imaging Sciences, 4, 1-39(2011).
[16] YUAN X. Generalized alternating projection based total variation minimization for compressive sensing[C], 25, 2539-2543(2016).
[17] WAHLBERG B, BOYD S, ANNERGREN M et al. An ADMM algorithm for a class of total variation regularized estimation problems[J]. IFAC Proceedings Volumes, 45, 83-88(2012).
[18] LI C B, YIN W T, JIANG H et al. An efficient augmented Lagrangian method with applications to total variation minimization[J]. Computational Optimization and Applications, 56, 507-530(2013).
[19] WANG P W, WANG C L, YU C P et al. Color ghost imaging via sparsity constraint and non-local self-similarity[J]. Chinese Optics Letters, 19(2021).
[20] KATZ O, BROMBERG Y, SILBERBERG Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).
[21] BROMBERG Y, KATZ O, SILBERBERG Y. Ghost imaging with a single detector[J]. Physical Review A, 79(2009).
[22] LI W W, TONG Z S, XIAO K et al. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints[J]. Optica, 6, 1515-1523(2019).
[23] LIU S, LIU Z, HU C et al. Spectral ghost imaging camera with super-Rayleigh modulator[J]. Optics Communications, 472, 126017(2020).
[24] CHU C Y, LIU S Y, LIU Z T et al. Spectral polarization camera based on ghost imaging via sparsity constraints[J]. Applied Optics, 60, 4632-4638(2021).
[25] WANG T, CHEN M Y, WU H et al. Underwater compressive computational ghost imaging with wavelet enhancement[J]. Applied Optics, 60, 6950-6957(2021).
[26] HUANG H, ZHOU C, TIAN T et al. High-quality compressive ghost imaging[J]. Optics Communications, 412, 60-65(2018).
[27] WU G H, LI T H, LI J H et al. Ghost imaging under low-rank constraint[J]. Optics Letters, 44, 4311-4314(2019).
[28] [28] 吴建荣, 沈夏, 喻虹, 等. 基于相位调制的单次曝光压缩感知成像[J]. 光学学报, 2014, 34(10): 1011005. doi: 10.3788/aos201434.1011005WUJ R, SHENX, YUH, et al. Snapshot compressive imaging by phase modulation[J]. Acta Optica Sinica, 2014, 34(10): 1011005.(in Chinese). doi: 10.3788/aos201434.1011005
[29] [29] 穆哲. 电容层析成像图像重建算法研究[D]. 兰州: 西北师范大学, 2021.MUZH. Research on Image Reconstruction Algorithm of Electrical Capacitance Tomography[D]. Lanzhou: Northwest Normal University, 2021. (in Chinese)
[30] CANDÈS E, RECHT B. Exact matrix completion via convex optimization[J]. Communications of the ACM, 55, 111-119(2012).
[31] CAI J F, CANDÈS E J, SHEN Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 20, 1956-1982(2010).
[32] XIE Y, GU S H, LIU Y et al. Weighted schatten
[33] ZUO W M, MENG D Y, ZHANG L et al. A generalized iterated shrinkage algorithm for non-convex sparse coding[C], 1, 217-224(2013).
Get Citation
Copy Citation Text
Teng LEI, Yiming ZHANG, Yizhe MA, Xuezhuan DING, Yingyue WU, Shiyong WANG. Passive compressive ghost imaging with low rank clustering[J]. Optics and Precision Engineering, 2024, 32(1): 12
Category:
Received: Jun. 26, 2023
Accepted: --
Published Online: Jan. 23, 2024
The Author Email: Shiyong WANG (s_y_w@sina.com)