Optics and Precision Engineering, Volume. 30, Issue 19, 2390(2022)

Cross-scale infrared pedestrian detection based on dynamic feature optimization mechanism

Shuai HAO, Tian HE, Xu MA*, Lei YANG, and Siya SUN
Author Affiliations
  • College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an710054, China
  • show less
    References(33)

    [1] [1] 1陈莹, 朱宇. 模态自适应权值学习机制下的多光谱行人检测网络[J]. 光学 精密工程, 2020, 28(12): 2700-2709. doi: 10.37188/OPE.20202812.2700CHENY, ZHUY. Multispectral pedestrian detection network under modal adaptive weight learning mechanism[J]. Optics and Precision Engineering, 2020, 28(12): 2700-2709.(in Chinese). doi: 10.37188/OPE.20202812.2700

    [2] [2] 2杨琦, 车进, 张良, 等. GAN网络混合编码的行人再识别[J]. 液晶与显示, 2021, 36(2): 334-342. doi: 10.37188/CJLCD.2020-0167YANGQ, CHEJ, ZHANGL, et al. Person re-identification of GAN network hybrid coding[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(2): 334-342.(in Chinese). doi: 10.37188/CJLCD.2020-0167

    [3] LI T, MA Y T, SHEN H et al. FPGA implementation of real-time pedestrian detection using normalization-based validation of adaptive features clustering[J]. IEEE Transactions on Vehicular Technology, 69, 9330-9341(2020).

    [4] KANAZAWA A, BLACK M J, JACOBS D W et al. End-to-end recovery of human shape and pose[C], 7122-7131(2018).

    [5] [5] 5穆靖, 李伟华, 饶俊民, 等. 采用三层模板局部差异度量的红外弱小目标检测[J]. 光学 精密工程, 2022, 30(7): 869-882. doi: 10.37188/OPE.20223007.0869MUJ, LIW H, RAOJ M, et al. Infrared small target detection using tri-layer template local difference measure[J]. Optics and Precision Engineering, 2022, 30(7): 869-882.(in Chinese). doi: 10.37188/OPE.20223007.0869

    [6] BISWAS S K, MILANFAR P. Linear support tensor machine with LSK channels: pedestrian detection in thermal infrared images[J]. IEEE Transactions on Image Processing, 26, 4229-4242(2017).

    [7] REN S Q, HE K M, GIRSHICK R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [8] [8] 8刘琼, 罗晴, 彭绍武. 车载热成像行人检测RoI提取方法[J]. 东北大学学报(自然科学版), 2020, 41(8): 1083-1090. doi: 10.12068/j.issn.1005-3026.2020.08.004LIUQ, LUOQ, PENGSH W. RoI extraction for vehicular thermal infrared pedestrian detection[J]. Journal of Northeastern University (Natural Science), 2020, 41(8): 1083-1090.(in Chinese). doi: 10.12068/j.issn.1005-3026.2020.08.004

    [9] CHEN Y Y, JHONG S Y, LI G Y et al. Thermal-based pedestrian detection using faster R-CNN and region decomposition branch[C], 1-2(2019).

    [10] XU Z W, VONG C M, WONG C C et al. Ground plane context aggregation network for day-and-night on vehicular pedestrian detection[J]. IEEE Transactions on Intelligent Transportation Systems, 22, 6395-6406(2021).

    [11] PEI D S, JING M X, LIU H P et al. A fast RetinaNet fusion framework for multi-spectral pedestrian detection[J]. Infrared Physics & Technology, 105, 103178(2020).

    [12] WANG D, LAN J H. PPDet: a novel infrared pedestrian detection network in a per-pixel prediction fashion[J]. Infrared Physics & Technology, 119, 103965(2021).

    [13] [13] 13李经宇, 杨静, 孔斌, 等. 基于注意力机制的多尺度车辆行人检测算法[J]. 光学 精密工程, 2021, 29(6): 1448-1458. doi: 10.37188/OPE.20212906.1448LIJ Y, YANGJ, KONGB, et al. Multi-scale vehicle and pedestrian detection algorithm based on attention mechanism[J]. Optics and Precision Engineering, 2021, 29(6): 1448-1458.(in Chinese). doi: 10.37188/OPE.20212906.1448

    [14] [14] 14刘怡帆, 王旭飞, 周鹏, 等. 基于YOLOv4神经网络的红外图像道路行人检测[J]. 数字技术与应用, 2021, 39(10): 19-22. doi: 10.19695/j.cnki.cn12-1369.2021.10.07LIUY F, WANGX F, ZHOUP, et al. Road pedestrian detection based on YOLOv4 neural network in infrared image[J]. Digital Technology & Application, 2021, 39(10): 19-22.(in Chinese). doi: 10.19695/j.cnki.cn12-1369.2021.10.07

    [15] LIU Y, SU H L, ZENG C et al. A robust thermal infrared vehicle and pedestrian detection method in complex scenes[J]. Sensors (Basel, Switzerland), 21, 1240(2021).

    [16] ZHENG Z H, WANG P, REN D W et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 52, 8574-8586(2022).

    [17] [17] 17贺愉婷, 车进, 吴金蔓. 基于YOLOv5和重识别的行人多目标跟踪方法[J]. 液晶与显示, 2022, 37(7): 880-890. doi: 10.37188/CJLCD.2022-0025HEY T, CHEJ, WUJ M. Pedestrian multi-target tracking method based on YOLOv5 and person re-identification[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(7): 880-890.(in Chinese). doi: 10.37188/CJLCD.2022-0025

    [18] FAN H Y, MA J S, FAN H H et al. Iterative quadtree decomposition based automatic selection of the seed point for ultrasound breast tumor images[J]. Multimedia Tools and Applications, 76, 3505-3517(2017).

    [19] JANG Y et al. Edge-enhancing bi-histogram equalisation using guided image filter[J]. Journal of Visual Communication and Image Representation, 58, 688-700(2019).

    [20] MA J Y, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 45, 153-178(2019).

    [21] EMARY E, ZAWBAA H M, GROSAN C. Experienced gray wolf optimization through reinforcement learning and neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 29, 681-694(2018).

    [22] BASHI-AZGHADI S N, AFSHAR A, AFSHAR M H. Multi-period response management to contaminated water distribution networks: dynamic programming versus genetic algorithms[J]. Engineering Optimization, 50, 415-429(2018).

    [23] KHISHE M, MOSAVI M R. Chimp optimization algorithm[J]. Expert Systems With Applications, 149, 113338(2020).

    [24] HWANG S, PARK J, KIM N et al. Multispectral pedestrian detection: Benchmark dataset and baseline[C], 1037-1045(2015).

    [25] [25] 25王灿芳, 崔良玉, 阎兵. 基于Variance-Brenner函数的显微图像清晰度评价算法研究[J]. 装备制造技术, 2020(10): 78-82. doi: 10.3969/j.issn.1672-545X.2020.10.020WANGC F, CUIL Y, YANB. Study on the microscopic image sharpness evaluation algorithm based on variance-Brenner function[J]. Equipment Manufacturing Technology, 2020(10): 78-82.(in Chinese). doi: 10.3969/j.issn.1672-545X.2020.10.020

    [26] [26] 26孙红利, 冯旗, 董峰. 图像清晰度评价算法研究[J]. 传感器与微系统, 2017, 36(2): 67-70. doi: 10.13873/J.1000-9787(2017)02-0067-04SUNH L, FENGQ, DONGF. Research on algorithm for image clarity evaluation[J]. Transducer and Microsystem Technologies, 2017, 36(2): 67-70.(in Chinese). doi: 10.13873/J.1000-9787(2017)02-0067-04

    [27] LIU W, ANGUELOV D, ERHAN D et al. SSD Single Shot MultiBox Detector[M]. Computer Vision - ECCV 2016, 21-37(2016).

    [28] LIN T Y, GOYAL P, GIRSHICK R et al. Focal loss for dense object detection[C], 2999-3007(2017).

    [29] SUN P Z, ZHANG R F, JIANG Y et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C], 14449-14458(2021).

    [30] ZHANG H Y, WANG Y, DAYOUB F et al. VarifocalNet: an IoU-aware dense object detector[C], 8510-8519(2021).

    [31] FENG C J, ZHONG Y J, GAO Y et al. TOOD: task-aligned one-stage object detection[C], 3490-3499(2021).

    [32] SUN M Y, ZHANG H C, HUANG Z L et al. Road infrared target detection with I‐YOLO[J]. IET Image Processing, 16, 92-101(2022).

    [33] Kieu M, Bagdanov A D, Bertini M et al. Task-conditioned domain adaptation for pedestrian detection in thermal imagery[C], 546-562(2020).

    Tools

    Get Citation

    Copy Citation Text

    Shuai HAO, Tian HE, Xu MA, Lei YANG, Siya SUN. Cross-scale infrared pedestrian detection based on dynamic feature optimization mechanism[J]. Optics and Precision Engineering, 2022, 30(19): 2390

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jun. 17, 2022

    Accepted: --

    Published Online: Oct. 27, 2022

    The Author Email: Xu MA (414548542@qq.com)

    DOI:10.37188/OPE.20223019.2390

    Topics