OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 20, Issue 4, 36(2022)

Research and Applications of Active Metasurfaces in Optical Modulation

WANG Ji-cheng1,2, HUANG Xian-yu1, LI Yu-ke1, and BAO Zhi-yu1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(96)

    [1] [1] Hu J, Bandyopadhyay S, Liu Y, et al. A review on metasurface: From principle to smart metadevices[J]. Frontiers in Physics, 2021, 8: 586087.

    [2] [2] Hsiao H-H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 2017, 1(4): 1600064.

    [3] [3] Qiu C-W, Zhang T, Hu G, et al. Quo vadis, metasurfaces?[J]. Nano Letters, 2021, 21(13): 5461-5474.

    [4] [4] Ding F, Pors A, Bozhevolnyi S I. Gradient metasurfaces: A review of fundamentals and applications[J]. Reports on Progress in Physics, 2018, 81(2): 026401.

    [5] [5] Nanfang Yu, Patrice Genevet, Mikhail A Kats, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

    [6] [6] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896-901.

    [7] [7] Z Yang, Z Wang, Y Wang, et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling[J]. Nat. Commun., 2018, 9: 4607.

    [8] [8] Deng Y, Wu C, Meng C, et al. Functional metasurface quarter-wave plates for simultaneous polarization conversion and beam steering[J]. ACS Nano, American Chemical Society, 2021, 15(11): 18532-18540.

    [9] [9] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Lett., 2012, 12(9): 4932-4936.

    [10] [10] Ni X, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nat. Commun., 2013, 4: 2807.

    [11] [11] Ni X, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427-427.

    [12] [12] Yu C-Y, Zeng Q-C, Yu C-J, et al. Scattering analysis and efficiency optimization of dielectric pancharatnam-Berry-phase metasurfaces[J]. Nanomaterials, 2021, 11(3): 586.

    [13] [13] Kaissner R, Li J, Lu W, et al. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies[J]. Science Advances, 2021, 7(19): eabd9450.

    [14] [14] Decker M, Staude I, Falkner M, et al. High-efficiency dielectric huygens’ surfaces[J]. Advanced Optical Materials, 2015, 3(6): 813-820.

    [15] [15] Huang Y, Zhu J, Jin S, et al. Polarization-controlled bifunctional metasurface for structural color printing and beam deflection[J]. Optics Letters, 2020, 45(7): 1707.

    [16] [16] Zhou G-N, Sun B-H, Liang Q-Y, et al. Beam-deflection short backfire antenna using phase-modulated metasurface[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(1): 546-551.

    [17] [17] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, American Chemical Society, 2012, 12(9): 4932-4936.

    [18] [18] Shalaginov M Y, An S, Zhang Y, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J]. Nature Communications, 2021, 12(1): 1225.

    [19] [19] Zheng G, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308–312.

    [20] [20] Lee G-Y, Yoon G, Lee S-Y, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, The Royal Society of Chemistry, 2018, 10(9): 4237-4245.

    [21] [21] Sung J, Lee G-Y, Lee B. Progresses in the practical metasurface for holography and lens[J]. Nanophotonics, De Gruyter, 2019, 8(10): 1701-1718.

    [22] [22] Cai H, Dolan J A, Gordon G S D, et al. Polarization-insensitive medium-switchable holographic metasurfaces[J]. ACS Photonics, 2021, 8(9): 2581-2589.

    [23] [23] Che Y, Wang X, Song Q, et al. Tunable optical metasurfaces enabled by multiple modulation mechanisms[J]. Nanophotonics, 2020, 9(15): 4407-4431.

    [24] [24] Badloe T, Lee J, Seong J, et al. Tunable metasurfaces: The path to fully active nanophotonics[J]. Advanced Photonics Research, 2021, 2(9): 2000205.

    [25] [25] Luo S, Hao J, Ye F, et al. Evolution of the electromagnetic manipulation: From tunable to programmable and intelligent metasurfaces[J]. Micromachines, 2021, 12(8): 988.

    [26] [26] Kamali S M, Arbabi E, Arbabi A, et al. Angle-multiplexed metasurfaces: Encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, American Physical Society, 2017, 7(4): 041056.

    [27] [27] Hu D, Lu Y, Cao Y, et al. Laser-splashed three-dimensional plasmonic nanovolcanoes for steganography in angular anisotropy[J]. ACS Nano, American Chemical Society, 2018, 12(9): 9233-9239.

    [28] [28] Shi Z, Zhu A Y, Li Z, et al. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion[J]. Science Advances, American Association for the Advancement of Science, 2020, 6(23): eaba3367.

    [29] [29] Tang J, Li Z, Wan S, et al. Angular multiplexing nanoprinting with independent amplitude encryption based on visible-frequency metasurfaces[J]. ACS Applied Materials & Interfaces, American Chemical Society, 2021, 13(32): 38623-38628.

    [30] [30] Jin L, Dong Z, Mei S, et al. Noninterleaved metasurface for (26-1) spin- and wavelength-encoded holograms[J]. Nano Letters, American Chemical Society, 2018, 18(12): 8016-8024.

    [31] [31] Wen D, Cadusch J J, Meng J, et al. Vectorial holograms with spatially continuous polarization distributions[J]. Nano Letters, American Chemical Society, 2021, 21(4): 1735-1741.

    [32] [32] Deng J, Yang Y, Tao J, et al. Spatial frequency multiplexed meta-holography and meta-nanoprinting[J]. ACS Nano, American Chemical Society, 2019, 13(8): 9237-9246.

    [33] [33] Zhao H, Quan B, Wang X, et al. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band[J]. ACS Photonics, American Chemical Society, 2018, 5(5): 1726-1732.

    [34] [34] Bao Y, Yan J, Yang X, et al. Point-source geometric metasurface holography[J]. Nano Letters, American Chemical Society, 2021, 21(5): 2332-2338.

    [35] [35] Franklin D, Modak S, Vázquez-Guardado A, et al. Covert infrared image encoding through imprinted plasmonic cavities[J]. Light: Science & Applications, 2018, 7(1): 93.

    [36] [36] Wei Q, Sain B, Wang Y, et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces[J]. Nano Letters, American Chemical Society, 2019, 19(12): 8964-8971.

    [37] [37] Gao H, Wang Y, Fan X, et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate[J]. Science Advances, American Association for the Advancement of Science, arXiv: 1909.05642.

    [38] [38] Jung C, Kim G, Jeong M, et al. Metasurface-driven optically variable devices[J]. Chemical Reviews, 2021, 121(21): 13013-13050.

    [39] [39] Karim M F, Liu A Q, Alphones A, et al. A tunable bandstop filter via the capacitance change of micromachined switches[J]. Journal of Micromechanics and Microengineering, 2006, 16(4): 851.

    [40] [40] Zhu W M, Liu A Q, Zhang W, et al. Polarization dependent state to polarization independent state change in THz metamaterials[J]. Applied Physics Letters, 2011, 99(22): 221102.

    [41] [41] Roy T, Zhang S, Jung I W, et al. Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 2018, 3(2): 021302.

    [42] [42] Han Z, Colburn S, Majumdar A, et al. MEMS-actuated metasurface Alvarez lens[J]. Microsystems & Nanoengineering, 2020, 6(1): 79.

    [43] [43] Arbabi E, Arbabi A, Kamali S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1): 812.

    [44] [44] Meng C, Thrane P C V, Ding F, et al. Dynamic piezoelectric MEMS-based optical metasurfaces[J]. Science Advances, 2021, 7(26): eabg5639.

    [45] [45] Cong L, Pitchappa P, Wang N, et al. Electrically programmable terahertz diatomic metamolecules for chiral optical control[J]. Research, 2019, (1): 1-11.

    [46] [46] Zhang Q, Plum E, Ou J, et al. Electrogyration in metamaterials: Chirality and polarization rotatory power that depend on applied electric field[J]. Advanced Optical Materials, 2021, 9(4): 2001826.

    [47] [47] Semnani B, Flannery J, Al Maruf R, et al. Spin-preserving chiral photonic crystal mirror[J]. Light: Science & Applications, 2020, 9(1): 23.

    [48] [48] Kwon H, Faraon A. NEMS-tunable dielectric chiral metasurfaces[J]. ACS Photonics, 2021, 8(10): 2980-2986.

    [49] [49] Chen S, Liu Z, Du H, et al. Electromechanically reconfigurable optical nano-kirigami[J]. Nature Communications, 2021, 12(1): 1299.

    [50] [50] Han Y, Chen S, Ji C, et al. Reprogrammable optical metasurfaces by electromechanical reconfiguration[J]. Optics Express, 2021, 29(19): 30751.

    [51] [51] Che Y, Wang X, Song Q, et al. Tunable optical metasurfaces enabled by multiple modulation mechanisms[J]. Nanophotonics, 2020, 9(15): 4407-4431.

    [52] [52] Gutruf P, Zou C, Withayachumnankul W, et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies[J]. ACS Nano, 2016, 10(1): 133-141.

    [53] [53] Song S, Ma X, Pu M, et al. Actively tunable structural color rendering with tensile substrate[J]. Advanced Optical Materials, 2017, 5(9): 1600829.

    [54] [54] Xu T, Wu Y-K, Luo X, et al. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging[J]. Nature Communications, 2010, 1(1): 59.

    [55] [55] Christ A, Ekinci Y, Solak H H, et al. Controlling the Fano interference in a plasmonic lattice[J]. Physical Review B, 2007, 76(20): 201405.

    [56] [56] Mizuno A, Ono A. Dynamic control of the interparticle distance in a self-assembled Ag nanocube monolayer for plasmonic color modulation[J]. ACS Applied Nano Materials, American Chemical Society, 2021, 4(9): 9721-9728.

    [57] [57] Malek S C, Ee H-S, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Letters, 2017, 17(6): 3641-3645.

    [58] [58] Zhang S, Huang L, Li X, et al. Dynamic display of full-stokes vectorial holography based on metasurfaces[J]. ACS Photonics, 2021, 8(6): 1746-1753.

    [59] [59] Wang Z, Jiang L, Li X, et al. Thermally reconfigurable hologram fabricated by spatially modulated femtosecond pulses on a heat-shrinkable shape memory polymer for holographic multiplexing[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51736-51745.

    [60] [60] Ahmed R, Butt H. Strain‐multiplex metalens array for tunable focusing and imaging[J]. Advanced Science, 2021, 8(4): 2003394.

    [61] [61] Fang Y, Ni Y, Leo S-Y, et al. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers[J]. Nature Communications, 2015, 6: 7416.

    [62] [62] She A, Zhang S, Shian S, et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2): eaap9957.

    [63] [63] Xu Z, Lin Y. A Stretchable terahertz parabolic‐shaped metamaterial[J]. Advanced Optical Materials, 2019, 7(19): 1900379.

    [64] [64] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [65] [65] Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature materials, 2007, 6(9): 652-655.

    [66] [66] Huang S, Song C, Zhang G, et al. Graphene plasmonics: physics and potential applications[J]. Nanophotonics, 2016, 6(6): 1191-1204.

    [67] [67] Ansell D, Radko I P, Han Z, et al. Hybrid graphene plasmonic waveguide modulator[J]. Nature Communications, 2015, 6: 8846.

    [68] [68] Yao Y, Kats M A, Shankar R, et al. Wide wavelength tuning of optical antennas on graphene with nanosecond response time[J]. Nano Letters, 2014, 14: 214-219.

    [69] [69] Wang X, Chen C, Pan L, et al. A graphene-based Fabry-Pérot spectrometer in mid-infrared region[J]. Scientific Reports, 2016, 6: 32616.

    [70] [70] Bao Z, Wang J, Hu Z D, et al. Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials[J]. Optics Express, 2019, 27(22): 31435-31445.

    [71] [71] Cruz G G. Bulk and surface plasmons in graphene finite superlattices[J]. Superlattices and Microstructures, 2019, 125: 315-321.

    [72] [72] Wang F, Wang Z, Qin C, et al. Asymmetric plasmonic supermodes in nonlinear graphene multilayers[J]. Optics Express, 2017, 25(2): 1234-1241.

    [73] [73] Guo L, He Y, Chen Y, et al. Controllable transition between optical bistability and multistability in graphene/dielectric/graphene structure[J]. The European Physical Journal B, 2018, 91(5): 79.

    [74] [74] Bao Z, Wang J, Hu Z D, et al. Coordination multi-band absorbers with patterned irrelevant graphene patches based on multilayer film structures[J]. Journal of Physics D, 2021, 54: 505306.

    [75] [75] Chu H S, Gan C H. Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays[J]. Applied Physics Letters, 2013, 102(23): 231107.

    [76] [76] Wang J, Wang X, Hu Z D, et al. Peak modulation in multi-cavity-coupled graphene-based waveguide system[J]. Nanoscale Research Letters, 2017, 12: 9.

    [77] [77] Wang J, Song C, Hang J, et al. Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration[J]. Optics Express, 2017, 25(20): 23880-23892.

    [78] [78] Wang J, Yang L, Wang M, et al. Perfect absorption and strong magnetic polaritons coupling of graphene-based silicon carbide grating cavity structures[J]. Journal of Physics D, 2019, 52(1): 015101.

    [79] [79] Hu J, Huang Y, Chen Y, et al. High-sensitivity multi-channel refractive-index sensor based on graphene-based hybrid Tamm plasmonic structure[J]. Optical Materials Express, 2021, 11(11): 3833-3843.

    [80] [80] Liu K, Lian M, Qin K, et al. Active tuning of electromagnetically induced transparency from chalcogenide-only metasurface[J]. Light: Advanced Manufacturing, 2021, 2: 19.

    [81] [81] Ligmajer F, Kejík L, Tiwari U, et al. Epitaxial VO2 nanostructures: A route to large-scale, switchable dielectric metasurfaces[J]. ACS Photonics, 2018, 5(7): 2561-2567.

    [82] [82] Chaudhary K, Tamagnone M, Capasso F, et al. Polariton nanophotonics using phase-change materials[J]. Nature Communications, 2019, 10: 4478.

    [83] [83] Tian J, Luo H, Yang Y, et al. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5[J]. Nature Communications, 2019, 10: 396.

    [84] [84] Wang Z, Yang T, Zhang Y, et al. Flat lenses based on 2D perovskite nanosheets[J]. Advanced Materials, 2020, 32(30): 2001388.

    [85] [85] Berestennikov A S, Voroshilov P M, Makarov S V, et al. Active meta-optics and nanophotonics with halide perovskites[J]. Applied Physics Reviews, 2019, 6(3): 31307.

    [86] [86] Snaith H J. Present status and future prospects of perovskite photovoltaics[J]. Nature Materials, 2018, 17(5): 372-376.

    [87] [87] Wang K, Xing G, Song Q, et al. Micro‐ and nanostructured lead halide perovskites: From materials to integrations and devices[J]. Advanced Materials, 2021, 33(6): 2000306.

    [88] [88] Tang B, Dong H, Sun L, et al. Single-mode lasers based on cesium lead halide perovskite submicron spheres[J]. ACS Nano, 2017, 11(11): 10681-10688.

    [89] [89] Gao Y, Huang C, Hao C, et al. Lead halide perovskite nanostructures for dynamic color display[J]. ACS Nano, 2018, 12(9): 8847-8854.

    [90] [90] Zhang C, Xiao S, Wang Y, et al. Lead halide perovskite‐based dynamic metasurfaces[J]. Laser & Photonics Reviews, 2019, 13(7): 1900079.

    [91] [91] Zhao S, Zhou J, Hu Z, et al. Halogen-perovskite metasurfaces for trichromatic channel color holographic imaging[J]. Optics Express, 2021, 29(26): 43316.

    [92] [92] Komar A, Paniagua-Domínguez R, Miroshnichenko A, et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1742-1748.

    [93] [93] Chung H, Miller O D. Tunable metasurface inverse design for 80% switching efficiencies and 144° angular deflection[J]. ACS Photonics, American Chemical Society, 2020, 7(8): 2236-2243.

    [94] [94] Hu Y, Ou X, Zeng T, et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region[J]. Nano Letters, 2021, 21(11): 4554-4562.

    [95] [95] Wang S, Wu P C, Su V-C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232.

    [96] [96] Bosch M, Shcherbakov M R, Won K, et al. Electrically actuated varifocal lens based on liquid-crystal-embedded dielectric metasurfaces[J]. Nano Letters, 2021, 21(9): 3849-3856.

    Tools

    Get Citation

    Copy Citation Text

    WANG Ji-cheng, HUANG Xian-yu, LI Yu-ke, BAO Zhi-yu. Research and Applications of Active Metasurfaces in Optical Modulation[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2022, 20(4): 36

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 30, 2021

    Accepted: --

    Published Online: Oct. 29, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics