Chinese Journal of Lasers, Volume. 49, Issue 15, 1507203(2022)
Super-Resolution Reconstruction of Optical Coherence Tomography Retinal Images by Generating Adversarial Network
[1] Khan A, Sohail A, Zahoora U et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 53, 5455-5516(2020).
[2] Shah Z H, Müller M, Wang T C et al. Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images[J]. Photonics Research, 9, B168-B181(2021).
[3] Dong C, Loy C C, He K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).
[4] Ma Y H, Chen X J, Zhu W F et al. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN[J]. Biomedical Optics Express, 9, 5129-5146(2018).
[5] Qiu B, Huang Z Y, Liu X et al. Noise reduction in optical coherence tomography images using a deep neural network with perceptually-sensitive loss function[J]. Biomedical Optics Express, 11, 817-830(2020).
[6] Huang Y Q, Lu Z X, Shao Z M et al. Simultaneous denoising and super-resolution of optical coherence tomography images based on generative adversarial network[J]. Optics Express, 27, 12289-12307(2019).
[7] Ledig C, Theis L, Huszár F et al. Photo-realistic single image super-resolution using a generative adversarial network[C], 105-114(2017).
[8] Bing X Y, Zhang W W, Zheng L Y et al. Medical image super-resolution using improved generative adversarial networks[J]. IEEE Access, 7, 145030-145038(2019).
[9] Das V, Dandapat S, Bora P K. A diagnostic information based framework for super-resolution and quality assessment of retinal OCT images[J]. Computerized Medical Imaging and Graphics, 94, 101997(2021).
[10] Zhu J Y, Park T, Isola P et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C], 2242-2251(2017).
[11] Yin H T, Deng H. Dual residual denoising network based on hybrid attention[J]. Laser & Optoelectronics Progress, 58, 1410002(2021).
[12] Fu J, Li W S, Du J et al. A multiscale residual pyramid attention network for medical image fusion[J]. Biomedical Signal Processing and Control, 66, 102488(2021).
[13] Wang Q L, Wu B G, Zhu P F et al. ECA-net: efficient channel attention for deep convolutional neural networks[C], 11531-11539(2020).
[14] Cheng X, Li X, Yang J et al. SESR: single image super-resolution with recursive squeeze and excitation networks[C], 147-152(2018).
[16] Wang H, Wu C D, Chi J N et al. Image super-resolution using multi-granularity perception and pyramid attention networks[J]. Neurocomputing, 443, 247-261(2021).
[17] Liu S, Qi L, Qin H F et al. Path aggregation network for instance segmentation[C], 8759-8768(2018).
[18] Qing Y H, Liu W Y. Hyperspectral image classification based on multi-scale residual network with attention mechanism[J]. Remote Sensing, 13, 335(2021).
[20] Lin X, Huang Q, Huang W et al. Single image deraining via detail-guided efficient channel attention network[J]. Computers & Graphics, 97, 117-125(2021).
[21] Cao Y, Xu J R, Lin S et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C], 1971-1980(2019).
[22] Johnson J, Alahi A, Li F F. Perceptual losses for real-time style transfer and super-resolution[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 694-711(2016).
[24] Li J C, Wu L M, Wang S M et al. Super-resolution image reconstruction of textile based on SRGAN[C], 436-439(2019).
[25] Bogunović H, Venhuizen F, Klimscha S et al. RETOUCH: the retinal OCT fluid detection and segmentation benchmark and challenge[J]. IEEE Transactions on Medical Imaging, 38, 1858-1874(2019).
[26] Wang X T, Yu K, Wu S X et al. ESRGAN: enhanced super-resolution generative adversarial networks[M]. Leal-Taixé L, Roth S. Computer vision-ECCV 2018 workshops. Lecture notes in computer science, 11133, 63-79(2019).
[27] Zhang W L, Liu Y H, Dong C et al. RankSRGAN: generative adversarial networks with ranker for image super-resolution[C], 3096-3105(2019).
[28] Zhu S Q, Wang J, Cai Y F. Low-dose CT denoising algorithm based on improved cycle GAN[J]. Acta Optica Sinica, 40, 2210002(2020).
Get Citation
Copy Citation Text
Shuting Ke, Minghui Chen, Zexi Zheng, Yuan Yuan, Teng Wang, Longxi He, Linjie Lü, Hao Sun. Super-Resolution Reconstruction of Optical Coherence Tomography Retinal Images by Generating Adversarial Network[J]. Chinese Journal of Lasers, 2022, 49(15): 1507203
Category: Biomedical Optical Imaging
Received: Dec. 14, 2021
Accepted: Jan. 14, 2022
Published Online: Jul. 29, 2022
The Author Email: Chen Minghui (cmhui.43@163.com)