Laser & Optoelectronics Progress, Volume. 57, Issue 22, 221023(2020)

Quantitative Identification of Concrete Surface Cracks Based on Deep Learning Clustering Segmentation and Morphology

Jiewen Yang1, Guang Zhang1, Xijiang Chen1、*, and Ya Ban2
Author Affiliations
  • 1School of Safety & Emergency Management, Wuhan University of Technology, Wuhan, Hubei 430079, China;
  • 2Chongqing Academic of Measurement and Quality Inspection, Chongqing 404100, China
  • show less
    Figures & Tables(17)
    Schematic of Crack Identification Net (CIN)
    Flowchart of identification
    Example of crack and non-crack images. (a) Crack images; (b) non-crack images
    Training and validation results for group 4th model. (a) Training results; (b) validation results
    Accuracy rate of training and validation for 5 different groups
    Example of identification results. (a) Original image; (b) crack classification and identification result
    Segmentation results obtained by the proposed algorithm and traditional methods. (a) Original image; (b) improved Otsu algorithm; (c) improved Canny algorithm; (d) improved median filter algorithm; (e) our algorithm
    Comparison of evaluation indicators of each algorithm
    Segmentation results obtained by the proposed algorithm and clustering methods. (a) Original image; (b) K-means algorithm; (c) mean shift algorithm; (d) fuzzy C-means algorithm; (e) our algorithm
    Comparison of evaluation indicators of each algorithm
    Identification of cracks with different thicknesses. (a) Original image; (b) identification of neural network; (c) segmentation; (d) mark
    Example of crack marking. (a) Crack 1; (b) crack 2
    Original crack images for quantitative calculation
    • Table 1. Pixel sizes of crack 1 and crack 2

      View table

      Table 1. Pixel sizes of crack 1 and crack 2

      Crack numberSegmentationnumberWidth /pixelLength /pixelAveragewidth /pixelOveralllength /pixelArea /pixel2Occupationration /%
      14107
      2463
      3497
      Crack 1451524.63119359940.76
      56163
      66286
      75258
      8367
      15913
      Crack 2261064.75138462131.47
      34240
      44125
    • Table 2. Actual size of cracks 1 and crack 2

      View table

      Table 2. Actual size of cracks 1 and crack 2

      Crack numberQuantitative calculationCrack gauge measurement
      Averagewidth /mmOveralllength /mmArea /mm2Averagewidth /mmOveralllength /mmArea /mm2
      Crack 10.97250.53264.331.00251.20261.52
      Crack 21.00290.64273.990.98288.42270.26
    • Table 3. Comparison of statistical results

      View table

      Table 3. Comparison of statistical results

      Group numberAverage width /mmOverall length /mmArea /mm2
      QuantitativecalculationCrack gaugemeasurementErrorQuantitativecalculationCrack gaugemeasurementErrorQuantitativecalculationCrack gaugemeasurementError
      10.981.000.02253.11257.334.22250.52254.333.81
      20.90.920.02232.45236.624.17211.20215.694.49
      31.121.080.04289.27280.948.33320.98318.412.57
      41.051.020.03271.19265.445.75281.74277.744
      50.971.000.03250.53256.286.75248.82253.284.46
      61.021.000.02263.44259.603.84266.70260.246.46
      70.950.980.03245.36250.425.06240.12247.417.29
      80.950.970.02246.72251.534.81244.54248.784.24
      90.991.020.03265.7263.442.26265.88267.231.35
      101.21.160.04309.93304.605.33364.81355.609.21
    • Table 4. Accuracy of statistical results

      View table

      Table 4. Accuracy of statistical results

      Group numberAccuracy of average width /mmAccuracy of overall length /mmAccuracy of area /mm2
      198.0098.3698.50
      297.8398.2497.92
      396.3097.0399.19
      497.0697.8398.56
      597.0097.3798.24
      698.0098.5297.52
      796.9497.9897.05
      897.9498.0998.30
      997.0699.1499.49
      1096.5598.2597.41
    Tools

    Get Citation

    Copy Citation Text

    Jiewen Yang, Guang Zhang, Xijiang Chen, Ya Ban. Quantitative Identification of Concrete Surface Cracks Based on Deep Learning Clustering Segmentation and Morphology[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221023

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Feb. 10, 2020

    Accepted: Mar. 6, 2020

    Published Online: Nov. 9, 2020

    The Author Email: Xijiang Chen (cxj_Q421@163.com)

    DOI:10.3788/LOP57.221023

    Topics