Laser & Optoelectronics Progress, Volume. 57, Issue 6, 061001(2020)

Pedestrian Attribute Recognition Based on Deep Learning

Peipei Yuan and Liang Zhang*
Author Affiliations
  • Tianjin Key Laboratory of Advanced Signal and Image Processing, Civil Aviation University of China, Tianjin 300300, China
  • show less
    Figures & Tables(9)
    Pedestrian attribute recognition network
    Structure of residual block
    Examples of image segmentation. (a) Image to be segmented; (b) result of semantic segmentation; (c) result of instance segmentation
    Samples of pedestrian images. (a)-(f) Sample 1-6
    Variation trend of regional contrast loss function during training
    Result of attribute recognition
    • Table 1. Label of pedestrian image and the ratio of attribute

      View table

      Table 1. Label of pedestrian image and the ratio of attribute

      AttributeFig. 4(a)-(c)Fig. 4(d)-(f)Ratio/%
      Age 16-300049.7
      Age 31-450132.9
      Age 46-600010.2
      Age above 61106.2
      Backpack0019.7
      Carrying other0019.9
      Casual lower1186.1
      Casual upper1185.3
      Formal lower0013.8
      Formal upper0013.4
      Hat1110.2
      Jacket006.9
      Jeans0030.6
      Leather shoes1029.6
      Logo004.0
      Long hair0023.8
      Male1054.9
      Messenger bag0129.6
      Muffler018.4
      No accessory0074.9
      No carrying1027.6
      Plaid002.7
      Plastic bag007.7
      Sandals000.2
      Shoes0136.3
      Shorts003.5
      Short sleeve0014.2
      Skirt004.6
      Sneaker0021.6
      Stripes001.7
      Sunglasses002.9
      Trousers1151.5
      T-shirt008.4
      Upper other1145.6
      V-neck001.2
    • Table 2. Experimental results of PETA dataset%

      View table

      Table 2. Experimental results of PETA dataset%

      AlgorithmEmAEaccEprecErecF1
      ACN[21]81.1573.6684.0681.2682.64
      DeepMAR[5]82.8975.0783.6883.1483.41
      FSPP[20]81.6775.7284.8483.1083.96
      HP-Net[7]81.7776.1384.9283.2484.07
      PGDM[18]82.9778.0886.8684.6885.76
      Experiment181.5576.0385.2082.8584.10
      Experiment283.3778.5687.6385.0386.24
      Experiment384.4979.4487.8285.9486.87
    • Table 3. Experimental results of RAP dataset%

      View table

      Table 3. Experimental results of RAP dataset%

      AlgorithmEmAEaccEprecErecF1
      ACN[21]69.6662.6180.1272.2675.98
      DeepMAR[5]73.7962.0274.9276.2175.56
      FSPP[20]79.6460.2569.1080.1674.21
      HP-Net[7]76.1265.3977.3378.7978.05
      PGDM[18]74.3164.5778.8675.9077.35
      Experiment179.0166.8579.4780.0477.94
      Experiment279.7067.0280.5480.4778.38
      Experiment380.1167.6881.6081.5579.62
    Tools

    Get Citation

    Copy Citation Text

    Peipei Yuan, Liang Zhang. Pedestrian Attribute Recognition Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2020, 57(6): 061001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jun. 26, 2019

    Accepted: Aug. 21, 2019

    Published Online: Mar. 6, 2020

    The Author Email: Liang Zhang (l-zhang@cauc.edu.cn)

    DOI:10.3788/LOP57.061001

    Topics