Chinese Journal of Lasers, Volume. 29, Issue 11, 1019(2002)
Study of Angle Distribution of Light Intensity in Powder SHG Method
[1] [1] Toshikuni Kaino. Waveguide fabrication using organic nonlinear optical materials [J]. J. Opt. A: Pure Appl. Opt., 2000, 2(4):R1~R7
[2] [2] M. Ahlhein, M. Barzonkas, P. V. Bedworth et al.. Chromophores with strong heterocyclic acceptors: A poled polymer with a large electro-optic coefficient [J]. Science, 1996, 271(5247):335~337
[3] [3] P. N. Prasad, D. H. Williams ed.. Introduction to Nonlinear Optical Effects in Molecules and Polymers [M]. John Wiley & Sons Inc, 1991
[4] [4] L. R. Dalton, A. W. Hooper, B. Wu et al.. Polymeric electro-optic madulators: materials synthesis and processing [J]. Adv. Mater., 1995, 71(6):519~540
[5] [5] K. Tanaka, A. Narazaki, Y. Yonezaki et al.. Poling-induced structural change and second-order nonlinearity of Na+-doped Nb2O5-TeO2 glass [J]. J. Phys.: Condens. Matter., 2000, 12(30):L513~L518
[6] [6] Ch. Bosshard, G. Knopfle, P. Pretre et al.. Second-order polarizabilities of nitropyridine derivatives determined with electric-field-induced second-harmonic generation and a solvatochromic method: A comparative study [J]. J. Appl. Phys., 1992, 71(4):1594~1605
[7] [7] M. S. Paley, J. M. Harris, H. Looser et al.. A solvatochromic method for determining second-order polarizabilities of organic molecules [J]. J. Orag. Chem., 1989, 54(16):3774~3778
[8] [8] G. R. Meredith. Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers [J]. Macromolecules, 1982, 15(5):1385~1389
[9] [9] G. Iftime, P. G. Lacroix, K. Nakatami et al.. Push-pull azulene-based chromophores with nonlinear optical properties [J]. Tetrahedron Lett., 1998, 39(38):6853~6856
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Study of Angle Distribution of Light Intensity in Powder SHG Method[J]. Chinese Journal of Lasers, 2002, 29(11): 1019