Journal of Synthetic Crystals, Volume. 52, Issue 3, 380(2023)
Research Progress on Preparation of Flexible Inorganic Ferroelectric Thin Film and Its Application in Memory Field
[1] [1] LIU X, WEI Y, QIU Y Y. Advanced flexible skin-like pressure and strain sensors for human health monitoring[J]. Micromachines, 2021, 12(6): 695.
[2] [2] NATHAN A, AHNOOD A, COLE M T, et al. Flexible electronics: the next ubiquitous platform[J]. Proceedings of the IEEE, 2012, 100: 1486-1517.
[3] [3] ZHANG Z L, LI H S, MILLER R, et al. Freestanding organic charge-transfer conformal electronics[J]. Nano Letters, 2018, 18(7): 4346-4354.
[4] [4] CHEN X Z, SHI S Y, SHI G Y, et al. Observation of the antiferromagnetic spin Hall effect[J]. Nature Materials, 2021, 20(6): 800-804.
[5] [5] KOMA A. Van der Waals epitaxy for highly lattice-mismatched systems[J]. Journal of Crystal Growth, 1999, 201/202: 236-241.
[6] [6] KOMA A. Summary abstract: fabrication of ultrathin heterostructures with van der waals epitaxy[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1985, 3(2): 724.
[7] [7] YEN M, BITLA Y, CHU Y H. Van der waals heteroepitaxy on muscovite[J]. Materials Chemistry and Physics, 2019, 234: 185-195.
[8] [8] CHANG L, YOU L, WANG J L. The path to flexible ferroelectrics: approaches and progress[J]. Japanese Journal of Applied Physics, 2018, 57(9): 0902A3.
[9] [9] CHU Y H. Van der waals oxide heteroepitaxy[J]. Npj Quantum Materials, 2017, 2: 67.
[10] [10] HAN Y L, FANG Y W, YANG Z Z, et al. Reconstruction of electrostatic field at the interface leads to formation of two-dimensional electron gas at multivalent (110)LaAlO3/SrTiO3 interfaces[J]. Physical Review B, 2015, 92(11): 115304.
[11] [11] JIANG J, BITLA Y, HUANG C W, et al. Flexible ferroelectric element based on van der Waals heteroepitaxy[J]. Science Advances, 2017, 3(6): e1700121.
[12] [12] YANG Y X, YUAN G L, YAN Z B, et al. Flexible, semitransparent, and inorganic resistive memory based on BaTi0.95Co0.05O3 film[J]. Advanced Materials, 2017, 29(26): 1700425.
[13] [13] AMRILLAH T, BITLA Y, SHIN K, et al. Flexible multiferroic bulk heterojunction with giant magnetoelectric coupling via van der Waals epitaxy[J]. ACS Nano, 2017, 11(6): 6122-6130.
[14] [14] SUN H Y, LUO Z, ZHAO L T, et al. BiFeO3-based flexible ferroelectric memristors for neuromorphic pattern recognition[J]. ACS Applied Electronic Materials, 2020, 2(4): 1081-1089.
[15] [15] SAIKI K, UENO K, SHIMADA T, et al. Application of van der Waals epitaxy to highly heterogeneous systems[J]. Journal of Crystal Growth, 1989, 95(1/2/3/4): 603-606.
[16] [16] BAKAUL S R, SERRAO C R, LEE O, et al. High speed epitaxial perovskite memory on flexible substrates[J]. Advanced Materials, 2017, 29(11): 1605699.
[17] [17] KIM J H, GRISHIN A M. Free-standing epitaxial La1-x(Sr, Ca)xMnO3 membrane on Si for uncooled infrared microbolometer[J]. Applied Physics Letters, 2005, 87(3): 033502.
[18] [18] TSAKALAKOS L, SANDS T. Epitaxial ferroelectric (Pb, La)(Zr, Ti)O3 thin films on stainless steel by excimer laser liftoff[J]. Applied Physics Letters, 2000, 76(2): 227-229.
[19] [19] GAN Q, RAO R A, EOM C B, et al. Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films[J]. Applied Physics Letters, 1998, 72(8): 978-980.
[20] [20] BAKAUL S R, SERRAO C R, LEE M, et al. Single crystal functional oxides on silicon[J]. Nature Communications, 2016, 7: 10547.
[21] [21] BAKAUL S R, SERRAO C R, LEE O, et al. High speed epitaxial perovskite memory on flexible substrates[J]. Advanced Materials, 2017, 29(11): 1605699.
[22] [22] SHEN L K, WU L, SHENG Q, et al. Epitaxial lift-off of centimeter-scaled spinel ferrite oxide thin films for flexible electronics[J]. Advanced Materials, 2017, 29(33): 1702411.
[23] [23] LU D, BAEK D J, HONG S S, et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers[J]. Nature Materials, 2016, 15(12): 1255-1260.
[24] [24] BAEK D J, LU D, HIKITA Y, et al. Mapping cation diffusion through lattice defects in epitaxial oxide thin films on the water-soluble buffer layer Sr3Al2O6 using atomic resolution electron microscopy[J]. APL Materials, 2017, 5(9): 096108.
[25] [25] JI D X, CAI S H, PAUDEL T R, et al. Freestanding crystalline oxide perovskites down to the monolayer limit[J]. Nature, 2019, 570(7759): 87-90.
[26] [26] DONG G H, LI S Z, YAO M T, et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation[J]. Science, 2019, 366(6464): 475-479.
[27] [27] LUO Z D, PETERS J J P, SANCHEZ A M, et al. Flexible memristors based on single-crystalline ferroelectric tunnel junctions[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23313-23319.
[28] [28] GUO R, YOU L, LIN W N, et al. Continuously controllable photoconductance in freestanding BiFeO3 by the macroscopic flexoelectric effect[J]. Nature Communications, 2020, 11: 2571.
[29] [29] ZHAO Z, ABDELSAMIE A, GUO R, et al. Flexible artificial synapse based on single-crystalline BiFeO3 thin film[J]. Nano Research, 2022, 15(3): 2682-2688.
[30] [30] OSADA M, SASAKI T. The rise of 2D dielectrics/ferroelectrics[J]. APL Materials, 2019, 7(12): 120902.
[31] [31] BELIANINOV A, HE Q, DZIAUGYS A, et al. CuInP2S6 room temperature layered ferroelectric[J]. Nano Letters, 2015, 15(6): 3808-3814.
[32] [32] LIU F C, YOU L, SEYLER K L, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes[J]. Nature Communications, 2016, 7: 12357.
[33] [33] ABRAHAMS S C. Systematic prediction of new ferroelectrics on the basis of structure[J]. Ferroelectrics, 1990, 104(1): 37-50.
[34] [34] DING W J, ZHU J B, WANG Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other Ⅲ2-Ⅵ3 van der Waals materials[J]. Nature Communications, 2017, 8: 14956.
[35] [35] ZHOU Y, WU D, ZHU Y H, et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes[J]. Nano Letters, 2017, 17(9): 5508-5513.
[36] [36] FEI Z Y, ZHAO W J, PALOMAKI T A, et al. Ferroelectric switching of a two-dimensional metal[J]. Nature, 2018, 560(7718): 336-339.
[37] [37] XIAO J, WANG Y, WANG H, et al. Berry curvature memory through electrically driven stacking transitions[J]. Nature Physics, 2020, 16(10): 1028-1034.
[38] [38] YASUDA K, WANG X R, WATANABE K, et al. Stacking-engineered ferroelectricity in bilayer boron nitride[J]. Science, 2021, 372(6549): 1458-1492.
[39] [39] VIZNER STERN M, WASCHITZ Y, CAO W, et al. Interfacial ferroelectricity by van der Waals sliding[J]. Science, 2021, 372(6549): 1462-1466.
[40] [40] MIKOLAJICK T, SLESAZECK S, MULAOSMANOVIC H, et al. Next generation ferroelectric materials for semiconductor process integration and their applications[J]. Journal of Applied Physics, 2021, 129(10): 100901.
[41] [41] MULAOSMANOVIC H, BREYER E T, DNKEL S, et al. Ferroelectric field-effect transistors based on HfO2: a review[J]. Nanotechnology, 2021, 32(50): 502002.
[42] [42] DE S, LU D D, LE H H, et al. Ultra-low power robust 3bit/cell Hf0.5Zr0.5O2 ferroelectric FinFET with high endurance for advanced computing-In-memory technology[C]//2021 Symposium on VLSI Technology. June 13-19, 2021, Kyoto, Japan. IEEE, 2021: 1-2.
[43] [43] LEE W, KAHYA O, TOH C T, et al. Flexible graphene-PZT ferroelectric nonvolatile memory[J]. Nanotechnology, 2013, 24(47): 475202.
[44] [44] GHONEIM M T, HUSSAIN M M. Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric[J]. Applied Physics Letters, 2015, 107(5): 052904.
[45] [45] YANG C H, HAN Y J, QIAN J, et al. Flexible, temperature-stable, and fatigue-endurable PbZr0.52Ti0.48O3 ferroelectric film for nonvolatile memory[J]. Advanced Electronic Materials, 2019, 5(10): 1900443.
[46] [46] SU L S, LU X B, CHEN L, et al. Flexible, fatigue-free, and large-scale Bi3.25La0.75Ti3O12 ferroelectric memories[J]. ACS Applied Materials & Interfaces, 2018, 10(25): 21428-21433.
[47] [47] GAO H, YANG Y X, WANG Y J, et al. Transparent, flexible, fatigue-free, optical-read, and nonvolatile ferroelectric memories[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35169-35176.
[48] [48] YANG C H, HAN Y J, QIAN J, et al. Flexible, temperature-resistant, and fatigue-free ferroelectric memory based on Bi(Fe0.93Mn0.05Ti0.02)O3 thin film[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12647-12655.
[49] [49] SUN H Y, LUO Z, LIU C C, et al. A flexible BiFeO3-based ferroelectric tunnel junction memristor for neuromorphic computing[J]. Journal of Materiomics, 2022, 8(1): 144-149.
[50] [50] MLLER J, POLAKOWSKI P, MUELLER S, et al. Ferroelectric hafnium oxide based materials and devices: assessment of current status and future prospects[J]. ECS Journal of Solid State Science and Technology, 2015, 4(5): N30-N35.
[51] [51] JUNQUERA J, GHOSEZ P. Critical thickness for ferroelectricity in perovskite ultrathin films[J]. Nature, 2003, 422(6931): 506-509.
[52] [52] MLLER J, YURCHUK E, SCHLSSER T, et al. Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG[C]//2012 Symposium on VLSI Technology (VLSIT). June 12-14, 2012, Honolulu, HI, USA. IEEE, 2012: 25-26.
[53] [53] SAKAI S, ILANGOVAN R, TAKAHASHI M. Pt/SrBi2Ta2O9/Hf-Al-O/Si field-effect-transistor with long retention using unsaturated ferroelectric polarization switching[J]. Japanese Journal of Applied Physics, 2004, 43(11B): 7876-7878.
[54] [54] MIKOLAJICK T, SCHROEDER U, SLESAZECK S. The past, the present, and the future of ferroelectric memories[J]. IEEE Transactions on Electron Devices, 2020, 67(4): 1434-1443.
[55] [55] BSCKE T S, TEICHERT S, BRUHAUS D, et al. Phase transitions in ferroelectric silicon doped hafnium oxide[J]. Applied Physics Letters, 2011, 99(11): 112904.
[56] [56] SAKAI S, ILANGOVAN R. Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance[J]. IEEE Electron Device Letters, 2004, 25(6): 369-371.
[57] [57] MULLER J, BOSCKE T S, SCHRODER U, et al. Nanosecond polarization switching and long retention in a novel MFIS-FET based on ferroelectric HfO2[J]. IEEE Electron Device Letters, 2012, 33(2): 185-187.
[58] [58] FLORENT K, PESIC M, SUBIRATS A, et al. Vertical ferroelectric HfO2 FET based on 3-D NAND architecture: towards dense low-power memory[C]//2018 IEEE International Electron Devices Meeting (IEDM). December 1-5, 2018, San Francisco, CA, USA. IEEE, 2019: 2.5.1-2.5.4.
[59] [59] XIAO W W, LIU C, PENG Y, et al. Performance improvement of Hf0.5Zr0.5O2-based ferroelectric-field-effect transistors with ZrO2 seed layers[J]. IEEE Electron Device Letters, 2019, 40(5): 714-717.
[60] [60] CHEN L, WANG L, PENG Y, et al. A van der waals synaptic transistor based on ferroelectric Hf0.5Zr0.5O2 and 2D tungsten disulfide[J]. Advanced Electronic Materials, 2020, 6(6): 2000057.
[61] [61] XIAO W W, LIU C, PENG Y, et al. Thermally stable and radiation hard ferroelectric Hf0.5Zr0.5O2 thin films on muscovite mica for flexible nonvolatile memory applications[J]. ACS Applied Electronic Materials, 2019, 1(6): 919-927.
Get Citation
Copy Citation Text
QI Jiabin, XIE Xinyu, LEE ChoongHyun. Research Progress on Preparation of Flexible Inorganic Ferroelectric Thin Film and Its Application in Memory Field[J]. Journal of Synthetic Crystals, 2023, 52(3): 380
Category:
Received: Oct. 11, 2022
Accepted: --
Published Online: Apr. 13, 2023
The Author Email: Jiabin QI (qi7jlsy@sina.com)
CSTR:32186.14.