The Journal of Light Scattering, Volume. 33, Issue 1, 59(2021)

The Research on Optical Absorption Properties of Au@SiO2 Core-Shell Single Crystal Octahedron Nanorod

YI Zhaoguang*, WU Qingchun, WANG Liancheng, JIN Yuanwei, XU Shenghui, and LIU Jinsheng
Author Affiliations
  • [in Chinese]
  • show less
    References(16)

    [1] [1] Dhakshinamoorthy A, Asiri A M, Garcia H. Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis[J]. ACS Catalysis, 2017, 7(4): 2896-2919.

    [2] [2] Torrisi L, Restuccia N. Laser-Generated Au Nanoparticles for Bio-Medical Applications[J]. IRBM, 2018, 39(5): 307-312.

    [3] [3] Skrabalak S E, Chen J Y, Sun Y G, et al. Gold nanocages: synthesis, properties, and applications. Accounts of Chemical Research[J]. 2008, 41(12): 1587-1595.

    [4] [4] Dai Q F, Ouyang M, Yuan W G, et al. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory[J]. Advanced Materials, 2017, 29(35): 1701918.

    [7] [7] Chen M, Tang S H, Guo Z D, et al. Core-Shell Pd@Au Nanoplates as Theranostic Agents for In-Vivo Photoacoustic Imaging, CT Imaging, and Photothermal Therapy[J]. Advanced Materials, 2014, 26(48): 8210-8216.

    [8] [8] Jain P K, Huang X H, El-Sayed I H, et al.Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Accounts of Chemical Research[J], 2008, 41(12): 1578-1586.

    [9] [9] Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J]. Advanced Materials, 2001, 13(18): 1389-1393.

    [10] [10] Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires[J]. Advanced Materials, 2002, 14(1): 80-82.

    [13] [13] Liu J, Kan C, Cong B, et al. Plasmonic property and stability of core-shell Au@SiO2 nanostructures[J]. Plasmonics, 2014, 9(5): 1007-1014.

    [14] [14] Duchene J S, Almeida R P, Wei W D. Facile synthesis of anisotropic Au@SiO2 core-shell nanostructures[J]. Dalton Transactions, 2012, 41(26): 7879-7882.

    [15] [15] Mie G. Beigrade zur optik truber medien, speziell kolloidaler metallo-sungen[J]. Ann Phys, 1908, 25: 377-445.

    [16] [16] Oskooi A F, Roundy D, Ibanescu, M, et al. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method[J]. Computer Physics Communications, 2010, 181(3): 687-702.

    [17] [17] Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations[J]. J Opt Soc Am A, 1994, 11(4), 1491-1499.

    [19] [19] Flatau P J, Draine B T. Fast near-field calculations in the discrete dipole approximation for regular rectilinear grids[J]. Optics Express, 2012(2), 20, 1247-1252.

    [20] [20] Draine B T. The discrete-dipole approximation and its application to interstellar graphite grains[J]. Astrophys J, 1988, 333(2), 848-872.

    Tools

    Get Citation

    Copy Citation Text

    YI Zhaoguang, WU Qingchun, WANG Liancheng, JIN Yuanwei, XU Shenghui, LIU Jinsheng. The Research on Optical Absorption Properties of Au@SiO2 Core-Shell Single Crystal Octahedron Nanorod[J]. The Journal of Light Scattering, 2021, 33(1): 59

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 10, 2020

    Accepted: --

    Published Online: Sep. 12, 2021

    The Author Email: Zhaoguang YI (yzg@njit.edu.cn)

    DOI:10.13883/j.issn1004-5929.202101008

    Topics