Chinese Journal of Lasers, Volume. 50, Issue 22, 2201005(2023)
310 nm Ultraviolet Solid‑State Raman Laser
[1] Feng Z Z, Kobayashi K, Ainsworth E. Impact of elevated ozone concentration on growth, physiology, and yield of wheat (triticum aestivum L.): a meta‐analysis[J]. Global Change Biology, 14, 2696-2708(2008).
[2] Shi G Y, Yang L X, Wang Y X et al. Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions[J]. Agriculture, Ecosystems & Environment, 131, 178-184(2009).
[3] Sinha A, Toumi R. Tropospheric ozone, lightning, and climate change[J]. Journal of Geophysical Research: Atmospheres, 102, 10667-10672(1997).
[4] Nakazato M, Nagai T, Sakai T et al. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide[J]. Applied Optics, 46, 2269-2279(2007).
[5] Papayannis A, Ancellet G, Pelon J et al. Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere[J]. Applied Optics, 29, 467-476(1990).
[6] Fan G Q, Liu J G, Chen Z Y et al. A differential absorption lidar system for tropospheric ozone monitoring[J]. Chinese Journal of Lasers, 39, 1113001(2012).
[7] Liu P, Zhang T S, Sun X H et al. Compact and movable ozone differential absorption lidar system based on an all-solid-state, tuning-free laser source[J]. Optics Express, 28, 13786-13800(2020).
[8] Chuang T, Hansell J, Shuman T et al. Narrow linewidth UV laser transmitter for ozone DIAL remote sensing application[J]. Proceedings of SPIE, 9726, 97260H(2016).
[9] Hu H L, Wang Z E, Wu Y H et al. UV-DIAL system for measurements of stratospheric ozone[J]. Scientia Atmospherica Sinica, 22, 701-708(1998).
[10] Armstrong D J, Smith A V. All solid-state high-efficiency tunable UV source for airborne or satellite-based ozone DIAL systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 721-731(2007).
[11] Liu Z J, Wang Q P, Zhang X Y et al. A diode side-pumped KTiOAsO4 Raman laser[J]. Optics Express, 17, 6968-6974(2009).
[12] Cong Z H, Zhang X Y, Wang Q P et al. The characteristics of intracavity Nd: YAG/KLu(WO4)2 Raman laser[J]. Laser Physics Letters, 7, 862-866(2010).
[13] Li Y L, Ding J, Bai Z X et al. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser[J]. High Power Laser Science and Engineering, 9, e35(2021).
[14] Heinzig M, Palma-Vega G, Walbaum T et al. Diamond Raman oscillator operating at 1178 nm[J]. Optics Letters, 45, 2898-2901(2020).
[15] Feve J P M, Shortoff K E, Bohn M J et al. High average power diamond Raman laser[J]. Optics Express, 19, 913-922(2011).
[16] Yang X Z, Kitzler O, Spence D J et al. Single-frequency 620 nm diamond laser at high power, stabilized via harmonic self-suppression and spatial-hole-burning-free gain[J]. Optics Letters, 44, 839-842(2019).
[17] Jing X, Chen G, Mao R. Investigation of characteristics of stimulated Raman scattering in Ba(NO3)2 crystal at ultraviolet wave band[J]. Chinese Journal of Lasers, 37, 1950-1955(2010).
[18] Nikkinen J, Härkönen A, Guina M. Sub-50 ps pulses at 620 nm obtained from frequency doubled 1240 nm diamond Raman laser[J]. Optics Express, 25, 30365-30370(2017).
[19] Chen Y, Liu J, Wang M et al. Discrete path Nd∶YAG Innoslab laser amplifier operating at 2 kHz repetition rate[J]. Laser & Optoelectronics Progress, 60, 2114007(2023).
[20] Powell R C, Murray J T, Austin W L et al. Solid state Raman lasers: materials, design, and applications[J]. Proceedings of SPIE, 3542, 45-49(1999).
[21] Murray J T, Austin W L, Powell R C. Intracavity Raman conversion and Raman beam cleanup[J]. Optical Materials, 11, 353-371(1999).
Get Citation
Copy Citation Text
Yilan Chen, Jiqiao Liu, Mingjian Wang, Xiaolei Zhu. 310 nm Ultraviolet Solid‑State Raman Laser[J]. Chinese Journal of Lasers, 2023, 50(22): 2201005
Category: laser devices and laser physics
Received: Feb. 17, 2023
Accepted: Apr. 2, 2023
Published Online: Nov. 7, 2023
The Author Email: Liu Jiqiao (x_qiao@siom.ac.cn), Zhu Xiaolei (xlzhu@siom.ac.cn)