Chinese Journal of Lasers, Volume. 50, Issue 22, 2201005(2023)

310 nm Ultraviolet Solid‑State Raman Laser

Yilan Chen1,2, Jiqiao Liu2,3、*, Mingjian Wang3, and Xiaolei Zhu1,2、**
Author Affiliations
  • 1Key laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Laboratory of Space Laser Engineering, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    References(21)

    [1] Feng Z Z, Kobayashi K, Ainsworth E. Impact of elevated ozone concentration on growth, physiology, and yield of wheat (triticum aestivum L.): a meta‐analysis[J]. Global Change Biology, 14, 2696-2708(2008).

    [2] Shi G Y, Yang L X, Wang Y X et al. Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions[J]. Agriculture, Ecosystems & Environment, 131, 178-184(2009).

    [3] Sinha A, Toumi R. Tropospheric ozone, lightning, and climate change[J]. Journal of Geophysical Research: Atmospheres, 102, 10667-10672(1997).

    [4] Nakazato M, Nagai T, Sakai T et al. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide[J]. Applied Optics, 46, 2269-2279(2007).

    [5] Papayannis A, Ancellet G, Pelon J et al. Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere[J]. Applied Optics, 29, 467-476(1990).

    [6] Fan G Q, Liu J G, Chen Z Y et al. A differential absorption lidar system for tropospheric ozone monitoring[J]. Chinese Journal of Lasers, 39, 1113001(2012).

    [7] Liu P, Zhang T S, Sun X H et al. Compact and movable ozone differential absorption lidar system based on an all-solid-state, tuning-free laser source[J]. Optics Express, 28, 13786-13800(2020).

    [8] Chuang T, Hansell J, Shuman T et al. Narrow linewidth UV laser transmitter for ozone DIAL remote sensing application[J]. Proceedings of SPIE, 9726, 97260H(2016).

    [9] Hu H L, Wang Z E, Wu Y H et al. UV-DIAL system for measurements of stratospheric ozone[J]. Scientia Atmospherica Sinica, 22, 701-708(1998).

    [10] Armstrong D J, Smith A V. All solid-state high-efficiency tunable UV source for airborne or satellite-based ozone DIAL systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 721-731(2007).

    [11] Liu Z J, Wang Q P, Zhang X Y et al. A diode side-pumped KTiOAsO4 Raman laser[J]. Optics Express, 17, 6968-6974(2009).

    [12] Cong Z H, Zhang X Y, Wang Q P et al. The characteristics of intracavity Nd: YAG/KLu(WO4)2 Raman laser[J]. Laser Physics Letters, 7, 862-866(2010).

    [13] Li Y L, Ding J, Bai Z X et al. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser[J]. High Power Laser Science and Engineering, 9, e35(2021).

    [14] Heinzig M, Palma-Vega G, Walbaum T et al. Diamond Raman oscillator operating at 1178 nm[J]. Optics Letters, 45, 2898-2901(2020).

    [15] Feve J P M, Shortoff K E, Bohn M J et al. High average power diamond Raman laser[J]. Optics Express, 19, 913-922(2011).

    [16] Yang X Z, Kitzler O, Spence D J et al. Single-frequency 620  nm diamond laser at high power, stabilized via harmonic self-suppression and spatial-hole-burning-free gain[J]. Optics Letters, 44, 839-842(2019).

    [17] Jing X, Chen G, Mao R. Investigation of characteristics of stimulated Raman scattering in Ba(NO3)2 crystal at ultraviolet wave band[J]. Chinese Journal of Lasers, 37, 1950-1955(2010).

    [18] Nikkinen J, Härkönen A, Guina M. Sub-50 ps pulses at 620 nm obtained from frequency doubled 1240 nm diamond Raman laser[J]. Optics Express, 25, 30365-30370(2017).

    [19] Chen Y, Liu J, Wang M et al. Discrete path Nd∶YAG Innoslab laser amplifier operating at 2 kHz repetition rate[J]. Laser & Optoelectronics Progress, 60, 2114007(2023).

    [20] Powell R C, Murray J T, Austin W L et al. Solid state Raman lasers: materials, design, and applications[J]. Proceedings of SPIE, 3542, 45-49(1999).

    [21] Murray J T, Austin W L, Powell R C. Intracavity Raman conversion and Raman beam cleanup[J]. Optical Materials, 11, 353-371(1999).

    Tools

    Get Citation

    Copy Citation Text

    Yilan Chen, Jiqiao Liu, Mingjian Wang, Xiaolei Zhu. 310 nm Ultraviolet Solid‑State Raman Laser[J]. Chinese Journal of Lasers, 2023, 50(22): 2201005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Feb. 17, 2023

    Accepted: Apr. 2, 2023

    Published Online: Nov. 7, 2023

    The Author Email: Liu Jiqiao (x_qiao@siom.ac.cn), Zhu Xiaolei (xlzhu@siom.ac.cn)

    DOI:10.3788/CJL230542

    Topics