Laser Technology, Volume. 46, Issue 3, 293(2022)
Research on uncertainty minimum ellipsoid envelope model of laser measurement system
[1] [1] SWYT D A. Length and dimensional measurements at NIST[J]. Journal of research of the National Institute of Standards and Techno-logy, 2001, 106(1): 1-23.
[2] [2] SHI H Y, GUO T, WANG D, et al. Power line suspension point location method based on laser point cloud[J]. Laser Technology, 2020, 44(3): 364-370(in Chinese).
[3] [3] SUI Sh Ch, ZHU X Sh. Digital measurement technique for evaluating aircraft final assembly quality[J]. Scientia Sinica Technologica, 2020, 50: 1449-1460(in Chinese).
[4] [4] DENG Zh P, LI S G, HUANG X. Coordinate transformation uncertainty analysis and reduction using hybrid reference system for aircraft assembly[J]. Assembly Automation, 2018, 38(4): 487-496.
[5] [5] MEI Z, MAROPOULOS P G. Review of the application of flexible, measurement-assisted assembly technology in aircraft manufacturing[J]. Proceedings of the Institution of Mechanical Engineers, 2014, B228(10): 1185-1197.
[6] [6] CHEN Z H, DU F Zh, TANG X Q. Research on uncertainty in mea-surement assisted alignment in aircraft assembly[J]. Chinese Journal of Aeronautics, 2013,26(6): 1568-1576.
[7] [7] DENG Zh Ch, WU Zh Y, YANG J G. Point cloud uncertainty analysis for laser radar measurement system based on error ellipsoid model[J]. Optics and Lasers in Engineering, 2016, 79: 78-84.
[8] [8] COX M G, HARRIS P M. Measurement uncertainty and traceability[J]. Measurement Science and Technology, 2006, 17(3): 533-540.
[9] [9] ZHANG F M, QU X H. Fusion estimation of point sets from multiple stations of spherical coordinate instruments utilizing uncertainty estimation based on Monte Carlo[J]. Measurement Science Review, 2012, 12(2): 40-45.
[10] [10] REN Y, LIN J R, ZHU J G, et al. Coordinate transformation uncertainty analysis in large-scale metrology[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(9): 2380-2388.
[11] [11] ZHU J K, LI L J, LIN X Zh. Research on the measurement field planning of lidar measurement system[J]. Laser Technology, 2021, 45(1): 99-104(in Chinese).
[12] [12] BERGSTRM P, EDLUND O. Robust registration of point sets using iteratively reweighted least squares[J]. Computational Optimization and Applications, 2014, 58(3): 543-561.
[13] [13] WANG Q, HUANG P, LI J X, et al. Uncertainty evaluation and optimization of INS installation measurement using Monte Carlo method[J]. Assembly Automation, 2015, 35(3): 221-233.
[14] [14] JIN Zh J, YU C J, LI J X, et al. Configuration analysis of the ERS points in large-volume metrology system[J]. Sensors, 2015, 15(9): 24397-24408.
[15] [15] PREDMORE C R. Bundle adjustment of multi-position measurements using the Mahalanobis distance[J]. Precision Engineering, 2010, 34(1): 113-123.
[16] [16] CALKINS J M. Quantifying coordinate uncertainty fields in coupled spatial measurement systems [D]. Virginia, USA:Virginia Polytechnic Institute and State University,2002,1:48.
[17] [17] LIU Y, SUN Sh Y. Laser point cloud denoising based on principal component analysis and surface fitting[J]. Laser Technology, 2020, 44(4): 497-502(in Chinese).
[18] [18] CHEN H S, MA H Zh, CHU X N, et al. Anomaly detection and critical attributes identification for products with multiple operating conditions based on isolation forest[J]. Advanced Engineering Informatics, 2020, 46: 101139.
[19] [19] SUSTO G A, BEGHI A, MCLOONE S. Anomaly detection through on-line isolation Forest: An application to plasma etching[C] // Proceeding of the 28th Annual SEMI Advanced Semiconductor Ma-nufacturing Conference (ASMC).New York, USA:IEEE, 2017: 89-94.
[20] [20] LIU F T, TING K M, ZHOU Zh H. Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data, 2012, 6(1):1-39.
[21] [21] CHEN W R, YUN Y H, WEN M, et al. Representative subset selection and outlier detection via isolation forest[J]. Analytical Methods, 2016, 8(39): 7225-7231.
[22] [22] KENNEDY J, EBERHART R. Particle swarm optimization[C] // Proceeding of IEEE International Conference on Neural Networks.New York, USA:IEEE, 1995: 1942-1948.
[23] [23] POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization[J]. Swarm Intelligence, 2007, 1(1): 33-57.
[24] [24] ALAM S, DOBBIE G, KOH Y S, et al. Research on particle swarm optimization based clustering: A systematic review of literature and techniques[J]. Swarm and Evolutionary Computation, 2014, 17: 1-13.
[25] [25] LI Y, XING Y, FANG C, et al. An experiment-based method for focused ion beam milling profile calculation and process design[J]. Sensors and Actuators, 2019, A286: 78-90.
[26] [26] LI Y, GOSLVEZ M A, PAL P, et al. Particle swarm optimization-based continuous cellular automaton for the simulation of deep reactive ion etching[J]. Journal of Micromechanics and Microengineering, 2015, 25(5): 055023.
[27] [27] CHEN S Q, ZHANG H Y, ZHAO Ch M, et al. Point cloud registration method based on particle swarm optimization algorithm improved by beetle antennae algorithm[J]. Laser Technology, 2020, 44(6): 678-683(in Chinese).
Get Citation
Copy Citation Text
LI Yuan, CHAI Yanhong, LIU Lanbo, MAO Zhe, ZHAI Xinhua. Research on uncertainty minimum ellipsoid envelope model of laser measurement system[J]. Laser Technology, 2022, 46(3): 293
Category:
Received: May. 10, 2021
Accepted: --
Published Online: Jun. 14, 2022
The Author Email: