Chinese Optics Letters, Volume. 19, Issue 12, 122702(2021)

Airborne quantum key distribution: a review [Invited] Editors' Pick

Yang Xue1,2, Wei Chen1、*, Shuang Wang1, Zhenqiang Yin1, Lei Shi2, and Zhengfu Han1、**
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 2Information and Navigation College, Air Force Engineering University, Xi’an 710077, China
  • show less
    Figures & Tables(10)
    Hierarchical quantum network operating in different atmospheric layers. LEO, low Earth orbit; MEO, medium Earth orbit; GEO, geostationary Earth orbit; HAP platform, high-altitude platform; UAV, unmanned aerial vehicle.
    Recent progress in airborne quantum communications. In clockwise order, the first downlink QKD demonstration in 2013 using the hot-air balloon by Wang et al.[46], the basis detection and compensation experiment in 2014 using the Z-9 helicopter by Zhang et al. from the Chinese Academy of Sciences[50], the first uplink QKD demonstration in 2017 using the Twin Otter research aircraft by Pugh et al. from the University of Waterloo[45], the first drone-based entanglement distribution in 2020 using UAV by Liu et al. from the Nanjing University[48,49], the drone-based QKD test in 2017 using DJI S1000+ octocopter by Hill et al. from the University of Illinois[5153" target="_self" style="display: inline;">–53], the free-space QKD in 2015 based on a moving pick-up truck by Bourgoin et al. from the University of Waterloo[54], and the first air-to-ground QKD demonstration in 2013 using the Dornier-228 aircraft by Nauerth et al. from the Ludwig-Maximilians University[44].
    Block diagrams of airborne QKD system. QRNG, quantum random number generator; Mod, modulator; Aux, auxiliary devices; TDC, time-to-digital converter; ATP, acquisition, tracking, and pointing; FSM, fast-steering mirror; PSD, position-sensitive detector; C, coupler; M, mirror; SPD, single-photon detector.
    Link configurations for airborne QKD.
    Secure key rates with different PER.
    Quantum source and transmitter in the ground-to-air QKD demonstration[45].
    ATP system in the drone-based entanglement distribution experiment[48].
    Schematic diagrams of time synchronization precision.
    • Table 1. List of Recent Airborne Quantum Communication Experiments and Related Projects

      View table
      View in Article

      Table 1. List of Recent Airborne Quantum Communication Experiments and Related Projects

      InitiativePlatformDistance and LossHeightVelocity (km/h)ResultsWavelength (nm)System Clock Rate (MHz)Quantum Signal DetectorOperation Time
      Wang et al., 2013[46]Hot-air balloon20 kmN/A0Downlink, polarization-coded BB84 268.87 bps (secure key)850100Si avalanche photodiode (APD)aNight
      3050dB
      Nauerth et al., 2013[44]Dornier-22820 km1.1 km290Downlink, polarization-coded BB84 145 bps (sifted key)85010Si APDAfter sunset
      38 dB
      Zhang et al., 2014[50]Z-92.5–7.5 km<1km100Downlink (polarization basis detection and compensation)8501Si APDNight
      Pugh et al., 2017[45]Twin Otter3–10 km1.6 km198–259Uplink, polarization-coded BB84 263.7–347 bps (secure key)785400Si APDNight
      34.4–51.1 dB
      Liu et al., 2020[48]UAV200 m 12 dB<100m0Downlink polarization entanglement distribution (CHSH-S parameter 2.41±0.14)810N/ASi APDDaytime/clear/rainy night
      Alexander et al., 2017[5153]UAV (DJI S1000+)>500mN/AN/ADownlink, project: polarization-encoded BB84650100Si APDIndoor/outdoor night
      10–20 dB
      Quintana et al., 2019[59]UAV1 kmN/AN/ADownlink/uplink, project: BB84 based on photonic integrated circuits (PICs)1550N/AIndium gallium arsenide (InGaAs) detector in Geiger modebN/A
      <25dB
      Liu et al., 2021[49]UAV∼1 km<100m0Relayed entanglement distribution (CHSH-S parameter 2.59±0.11)810N/ASi APDNight
      20 dB
    • Table 2. ATP Performance of the Typical Airborne Quantum Communication Experiments

      View table
      View in Article

      Table 2. ATP Performance of the Typical Airborne Quantum Communication Experiments

      Representative ExamplesNauerth et al., 2013[44]Zhang et al., 2014[50]Liu et al., 2020[48]
      ComponentsTransmitterReceiverTransmitterReceiverTransmitterReceiver
      Coarse pointingTypeTorque2-axis2-axis2-axis3-axis3-axis
      motorsgimbalgimbalgimbalgimbalgimbal
      Tracking rangeAzimuth ±45°Azimuth ±5°Azimuth ±45°Azimuth ±45°
      ElevationElevationElevationElevation
      ±70°±5°±15°±15°
      Fine pointingType RangeVCMPMFSM ±0.7mradFSM ±0.7mradPZT FSM ±1.75radPZT FSM ±1.75rad
      Coarse cameraTypeInGaAsInGaAsCMOSCMOSCMOSCMOS
      FOV48 mrad12.8 mrad2° (35mrad)1° (17.4mrad)0.11rad×0.08rad0.11rad×0.08rad
      Fine cameraType4QDInGaAsCMOSCMOSPSDPSD
      FOV3.3 mrad960 µrad512 µrad512 µrad40mrad×40mrad40mrad×40mrad
      Frame rate400 Hz2.3 kHz2.3 kHz60 kHz60 kHz
      Beacon laserDivergence3 mrad1 mrad10 mrad10 mrad
      Tracking error500 µrad±200µrad±5µrad1.15µm×1.33µm (2.26×104µrad)0.62µm×0.46µm (1.08×104µrad)
    Tools

    Get Citation

    Copy Citation Text

    Yang Xue, Wei Chen, Shuang Wang, Zhenqiang Yin, Lei Shi, Zhengfu Han, "Airborne quantum key distribution: a review [Invited]," Chin. Opt. Lett. 19, 122702 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics and Quantum Information

    Received: Jul. 2, 2021

    Accepted: Sep. 29, 2021

    Published Online: Nov. 4, 2021

    The Author Email: Wei Chen (weich@ustc.edu.cn), Zhengfu Han (zfhan@ustc.edu.cn)

    DOI:10.3788/COL202119.122702

    Topics