Acta Optica Sinica, Volume. 42, Issue 3, 0327013(2022)
Analysis of Quantum Interferometer Based on Optical Parametric Amplifier
[1] Mason D, Chen J X, Rossi M et al. Continuous force and displacement measurement below the standard quantum limit[J]. Nature Physics, 15, 745-749(2019).
[2] Taylor M A, Janousek J, Daria V et al. Subdiffraction-limited quantum imaging within a living cell[J]. Physical Review X, 4, 011017(2014).
[3] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).
[4] Caves C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 23, 1693-1708(1981).
[5] Bondurant R S, Shapiro J H. Squeezed states in phase-sensing interferometers[J]. Physical Review D, 30, 2548-2556(1984).
[6] Yan Z H, Wu L, Jia X J et al. Quantum entanglement among multiple memories for continuous variables[J]. Advanced Quantum Technologies, 4, 2100071(2021).
[7] Zhou Y Y, Yu J, Yan Z H et al. Entanglement source with high entanglement degree based on wedged nonlinear crystals[J]. Acta Optica Sinica, 38, 0727001(2018).
[8] Wu L, Liu Y H, Deng R J et al. Experimental preparation of bipartite polarization entangled optical fields at 795 nm[J]. Acta Optica Sinica, 37, 0527001(2017).
[9] Degen C L, Reinhard F, Cappellaro P. Quantum sensing[J]. Reviews of Modern Physics, 89, 035002(2017).
[10] Ma Y Q, Miao H X, Pang B H et al. Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement[J]. Nature Physics, 13, 776-780(2017).
[11] Lawrie B J, Lett P D, Marino A M et al. Quantum sensing with squeezed light[J]. ACS Photonics, 6, 1307-1318(2019).
[12] Mitchell M W, Lundeen J S, Steinberg A M. Super-resolving phase measurements with a multiphoton entangled state[J]. Nature, 429, 161-164(2004).
[13] Giovannetti V, Lloyd S, Maccone L. Quantum metrology[J]. Physical Review Letters, 96, 010401(2006).
[14] Nagata T, Okamoto R. O’Brien J L, et al. Beating the standard quantum limit with four-entangled photons[J]. Science, 316, 726-729(2007).
[15] Huo M R, Qin J L, Sun Y R et al. Generation of intensity difference squeezed state of light at optical fiber communication wavelength[J]. Journal of Quantum Optics, 24, 134-140(2018).
[16] Zhang C, Feng J X, Li Y J et al. Investigation on the transmission characteristic of squeezed vacuum state over optical fibers[J]. Journal of Quantum Optics, 27, 8-14(2021).
[17] Xiao M, Wu L A, Kimble H J. Precision measurement beyond the shot-noise limit[J]. Physical Review Letters, 59, 278-281(1987).
[18] Grangier P, Slusher R E, Yurke B et al. Squeezed-light-enhanced polarization interferometer[J]. Physical Review Letters, 59, 2153-2156(1987).
[19] Tse M, Yu H, Kijbunchoo N et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy[J]. Physical Review Letters, 123, 231107(2019).
[20] McKenzie K, Shaddock D A, McClelland D E et al. Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection[J]. Physical Review Letters, 88, 231102(2002).
[21] Goda K, Miyakawa O, Mikhailov E E et al. A quantum-enhanced prototype gravitational-wave detector[J]. Nature Physics, 4, 472-476(2008).
[22] Eberle T, Steinlechner S, Bauchrowitz J et al. Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection[J]. Physical Review Letters, 104, 251102(2010).
[23] Aasi J, Abadie J, Abbott B P et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[J]. Nature Photonics, 7, 613-619(2013).
[24] Yurke B. McCall S L, Klauder J R. SU(2) and SU(1, 1) interferometers[J]. Physical Review A, 33, 4033-4054(1986).
[25] Plick W N, Dowling J P, Agarwal G S. Coherent-light-boosted, sub-shot noise, quantum interferometry[J]. New Journal of Physics, 12, 083014(2010).
[26] Ou Z Y. Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer[J]. Physical Review A, 85, 023815(2012).
[27] Hudelist F, Kong J, Liu C J et al. Quantum metrology with parametric amplifier-based photon correlation interferometers[J]. Nature Communications, 5, 3049(2014).
[28] Manceau M, Leuchs G, Khalili F et al. Detection loss tolerant supersensitive phase measurement with an SU(1, 1) interferometer[J]. Physical Review Letters, 119, 223604(2017).
[29] Coelho A S. Barbosa F A S, Cassemiro K N, et al. Three-color entanglement[J]. Science, 326, 823-826(2009).
[30] Roslund J, de Araújo R M, Jiang S F et al. Wavelength-multiplexed quantum networks with ultrafast frequency combs[J]. Nature Photonics, 8, 109-112(2014).
[31] Chen M, Menicucci N C, Pfister O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb[J]. Physical Review Letters, 112, 120505(2014).
[32] Yan Z H, Wu L, Jia X J et al. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles[J]. Nature Communications, 8, 718(2017).
[33] Zhou Y Y, Yu J, Yan Z H et al. Quantum secret sharing among four players using multipartite bound entanglement of an optical field[J]. Physical Review Letters, 121, 150502(2018).
[34] Huo M R, Qin J L, Cheng J L et al. 4(10): eaas9401(2018).
[35] Asavanant W, Shiozawa Y, Yokoyama S et al. Generation of time-domain-multiplexed two-dimensional cluster state[J]. Science, 366, 373-376(2019).
[36] Larsen M V, Guo X S, Breum C R et al. Deterministic generation of a two-dimensional cluster state[J]. Science, 366, 369-372(2019).
[37] Vahlbruch H, Mehmet M, Danzmann K et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 117, 110801(2016).
[38] Yan Z H, Qin J L, Qin Z Z et al. Generation of non-classical states of light and their application in deterministic quantum teleportation[J]. Fundamental Research, 1, 43-49(2021).
[39] Sun Y R, Huo M R, Yan Z H et al. Quantum teleportation based on four-partite entangled states[J]. Acta Optica Sinica, 38, 0527001(2018).
[40] Zuo X J, Yan Z H, Feng Y N et al. Quantum interferometer combining squeezing and parametric amplification[J]. Physical Review Letters, 124, 173602(2020).
[41] Campos R A. Saleh B E A, Teich M C. Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics[J]. Physical Review A, 40, 1371-1384(1989).
Get Citation
Copy Citation Text
Yizhao Liu, Xiaojie Zuo, Zhihui Yan, Xiaojun Jia. Analysis of Quantum Interferometer Based on Optical Parametric Amplifier[J]. Acta Optica Sinica, 2022, 42(3): 0327013
Category: Quantum Optics
Received: Aug. 24, 2021
Accepted: Nov. 2, 2021
Published Online: Jan. 24, 2022
The Author Email: Yan Zhihui (zhyan@sxu.edu.cn)