AEROSPACE SHANGHAI, Volume. 41, Issue 3, 63(2024)

Path Planning with Homotopy Class Constraints for Space Robots

Weiran YAO*, Haoyu TIAN, Ouyang ZHANG, Yi ZENG, Guanghui SUN, and Ligang WU
Author Affiliations
  • School of Astronautics, Harbin Institute of Technology, Harbin150001, , China
  • show less
    References(65)

    [1] J D GAMMELL, M P STRUB. Asymptotically optimal sampling-based motion planning methods. Annual Review of Control,Robotics,and Autonomous Systems, 4, 295-318(2021).

    [2] J HERSHBERGER, J SNOEYINK. Computing minimum length paths of a given homotopy class. Computational Geometry, 4, 63-97(1994).

    [3] J PARK, S KARUMANCHI, K IAGNEMMA. Homotopy-based divide-and-conquer strategy for optimal trajectory planning via mixed-integer programming. IEEE Transactions on Robotics, 31, 1101-1115(2015).

    [4] A ORTHEY, B FRÉSZ, M TOUSSAINT. Motion planning explorer:visualizing local minima using a local-minima tree. IEEE Robotics and Automation Letters, 5, 346-353(2020).

    [5] J LAWSON, E KIZIL. Homotopy path spaces for families of admissible paths. Journal of Dynamical and Control Systems, 23, 635-654(2017).

    [7] E KIZIL. Control homotopy of trajectories. Journal of Dynamical and Control Systems, 27, 683-692(2021).

    [8] W YAO, N QI, Y LIU et al. Homotopic approach for robot allocation optimization coupled with path constraints. IEEE Robotics and Automation Letters, 5, 88-95(2020).

    [9] V RANGANENI, S CHINTALAPUDI, O SALZMAN et al. Effective footstep planning using homotopy-class guidance. Artificial Intelligence, 286, 103346(2020).

    [10] S MCCAMMON, G A HOLLINGER. Topological path planning for autonomous information gathering. Autonomous Robots, 45, 821-842(2021).

    [11] Y LIU, N QI, W YAO et al. Optimal scheduling for aerial recovery of multiple unmanned aerial vehicles using genetic algorithm. Proceedings of the Institution of Mechanical Engineers, 233, 5347-5359(2019).

    [12] T RYBUS. Obstacle avoidance in space robotics: Review of major challenges and proposed solutions. Progress in Aerospace Sciences, 101, 31-48(2018).

    [13] Y XIE, Z ZHANG, X WU et al. Obstacle avoidance and path planning for multi-joint manipulator in a space robot. IEEE Access, 8, 3511-3526(2020).

    [14] S WANG, Y CAO, X ZHENG et al. Collision-free trajectory planning for a 6-DoF free-floating space robot via hierarchical decoupling optimization. IEEE Robotics and Automation Letters, 7, 4953-4960(2022).

    [15] O ZHANG, W YAO, D DU et al. Trajectory optimization and tracking control of free-flying space robots for capturing non-cooperative tumbling objects. Aerospace Science and Technology, 143, 108718(2023).

    [16] H VAZQUEZ-LEAL, A MARIN-HERNANDEZ, Y KHAN et al. Exploring collision-free path planning by using homotopy continuation methods. Applied Mathematics and Computation, 219, 7514-7532(2013).

    [17] G DIAZ-ARANGO, H VÁZQUEZ-LEAL, L HERNANDEZ-MARTINEZ et al. Homotopy path planning for terrestrial robots using spherical algorithm. IEEE Transactions on Automation Science and Engineering, 15, 567-585(2018).

    [19] S BHATTACHARYA, R GHRIST, V KUMAR et al. Persistent homology for path planning in uncertain environments. IEEE Transactions on Robotics, 31, 578-590(2015).

    [20] W HE, Y HUANG, J WANG et al. Homotopy method for optimal motion planning with homotopy class constraints. IEEE Control Systems Letters, 7, 1045-1050(2023).

    [21] W LI, W LI, L CHENG et al. Trajectory optimization with complex obstacle avoidance constraints via homotopy network sequential convex programming. Aerospace, 9, 720(2022).

    [22] Y GUO, D YAO, B LI et al. Down-sized initialization for optimization-based unstructured trajectory planning by only optimizing critical variables. IEEE Transactions on Intelligent Vehicles, 8, 709-720(2023).

    [23] S MANZINGER, M ALTHOFF. Using reachable sets for trajectory planning of automated vehicles. IEEE Transactions on Intelligent Vehicles, 6, 232-248(2021).

    [24] S BESPAMYATNIKH. Computing homotopic shortest paths in the plane. Journal of Algorithms, 49, 284-303(2003).

    [25] W ZHANG, H WEN. Motion planning of a free-flying space robot system under end effector task constraints. Acta Astronautica, 199, 195-205(2022).

    [26] M WANG, J LUO, J YUAN et al. Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization. Acta Astronautica, 146, 259-272(2018).

    [27] W XU, Y LIU, B LIANG et al. Non-holonomic path planning of a free-floating space robotic system using genetic algorithms. Advanced Robotics, 22, 451-476(2012).

    [28] A SEDDAOUI, C M SAAJ. Collision-free optimal trajectory generation for a space robot using genetic algorithm. Acta Astronautica, 179, 311-321(2021).

    [29] D LI, Y LI, X LIU et al. Pseudospectral convex programming for free-floating space manipulator path planning. Space:Science & Technology, 3(2023).

    [30] Y WU, Z YU, C LI et al. Reinforcement learning in dual-arm trajectory planning for a free-floating space robot. Aerospace Science and Technology, 98, 105657(2020).

    [31] M WANG, J LUO, J FANG et al. Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm. Advances in Space Research, 61, 1525-1536(2018).

    [32] T RYBUS, M WOJTUNIK, F L BASMADJI. Optimal collision-free path planning of a free-floating space robot using spline-based trajectories. Acta Astronautica, 190, 395-408(2022).

    [33] M WANG, J LUO, U WALTER. Trajectory planning of free-floating space robot using Particle Swarm Optimization (PSO). Acta Astronautica, 112, 77-88(2015).

    [34] V K DALLA, P M PATHAK. Curve-constrained collision-free trajectory control of hyper-redundant planar space robot. Proceedings of the Institution of Mechanical Engineers, 231, 282-298(2017).

    [35] R H TESHNIZI, D A SHELL. Motion planning for a pair of tethered robots. Autonomous Robots, 45, 693-707(2021).

    [36] X ZHANG, Q PHAM. Planning coordinated motions for tethered planar mobile robots. Robotics and Autonomous Systems, 118, 189-203(2019).

    [37] M CAO, K CAO, S YUAN et al. NEPTUNE: nonentangling trajectory planning for multiple tethered unmanned vehicles. IEEE Transactions on Robotics, 39, 2786-2804(2023).

    [38] L PETIT, A L DESBIENS. TAPE:tether-aware path planning for autonomous exploration of unknown 3D cavities using a tangle-compatible tethered aerial robot. IEEE Robotics and Automation Letters, 7, 10550-10557(2022).

    [39] J LUO, Z WU, X XU et al. Forward statics of tensegrity robots with rigid bodies using homotopy continuation. IEEE Robotics and Automation Letters, 7, 5183-5190(2022).

    [40] S BHATTACHARYA, M LIKHACHEV, V KUMAR. Topological constraints in search-based robot path planning. Autonomous Robots, 33, 273-290(2012).

    [41] W YAO, L XIN, Y PENG et al. Trajectory consensus for coordination of multiple curvature-bounded vehicles. IEEE Transactions on Cybernetics, 52, 6307-6319(2022).

    [42] W YAO, N QI, C YUE et al. Curvature-bounded lengthening and shortening for restricted vehicle path planning. IEEE Transactions on Automation Science and Engineering, 17, 15-28(2020).

    [43] J AYALA. Length minimising bounded curvature paths in homotopy classes. Topology and its Applications, 193, 140-151(2015).

    [44] H K SIPOWA, J MCMAHON. Fuel-optimal geometric path planning algorithm for spacecraft formation flying. Journal of Guidance,Control,and Dynamics, 45, 1862-1872(2022).

    [45] T HABERKORN, P MARTINON, J GERGAUD. Low-thrust minimum-fuel orbital transfer: a homotopic approach. Journal of Guidance,Control,and Dynamics, 27, 1046-1060(2004).

    [46] B PAN, X PAN, P LU. Finding best solution in low-thrust trajectory optimization by two-phase homotopy. Journal of Spacecraft and Rockets, 56, 283-291(2019).

    [47] J LI, X XI. Fuel-optimal low-thrust reconfiguration of formation-flying satellites via homotopic approach. Journal of Guidance,Control,and Dynamics, 35, 1709-1717(2012).

    [49] W WANG, D WU, G MENGALI et al. Asteroid hovering missions from a fuel-consumption viewpoint. Journal of Guidance,Control,and Dynamics, 43, 1374-1382(2020).

    [50] H YANG, S LI, X BAI. Fast homotopy method for asteroid landing trajectory optimization using approximate initial costates. Journal of Guidance, Control,and Dynamics, 42, 585-597(2019).

    [52] D KIM, J D TURNER, J L JUNKINS. Optimal actuator failure control using a homotopy method. Journal of Guidance,Control,and Dynamics, 38, 623-630(2015).

    [53] A C MORELLI, C HOFMANN, F TOPPUTO. Robust low-thrust trajectory optimization using convex programming and a homotopic approach. IEEE Transactions on Aerospace and Electronic Systems, 58, 2103-2116(2022).

    [57] Y LIU, W YAN, C YU et al. Predefined-time trajectory planning for a dual-arm free-floating space robot, 2798-2800(2020).

    [58] E PAPADOPOULOS, I TORTOPIDIS, K NANOS. Smooth planning for free-floating space robots using polynomials, 4272-4277(2005).

    [59] L ZHAO, S WANG, Y HAO et al. Energy-dependent mission planning for agile earth observation satellite. Journal of Aerospace Engineering, 32(2019).

    [60] H BASU, Y PEDARI, M ALMASSALKHI et al. Computationally efficient collision-free trajectory planning of satellite swarms under unmodeled orbital perturbations. Journal of Guidance,Control,and Dynamics, 46, 1-16(2023).

    [61] W YAO, N QI, J ZHAO et al. Bounded curvature path planning with expected length for Dubins vehicle entering target manifold. Robotics and Autonomous Systems, 97, 217-229(2017).

    [62] E HERNANDEZ, M CARRERAS, P RIDAO. A comparison of homotopic path planning algorithms for robotic applications. Robotics and Autonomous Systems, 64, 44-58(2015).

    [63] W CHI, Z DING, J WANG et al. A generalized Voronoi diagram-based efficient heuristic path planning method for RRTs in mobile robots. IEEE Transactions on Industrial Electronics, 69, 4926-4937(2022).

    [64] J WANG, M Q MENG, O KHATIB. EB-RRT: optimal motion planning for mobile robots. IEEE Transactions on Automation Science and Engineering, 17, 2063-2073(2020).

    [65] F YU, Y CHEN. Cyl-IRRT*:homotopy optimal 3D path planning for AUVs by biasing the sampling into a cylindrical informed subset. IEEE Transactions on Industrial Electronics, 70, 3985-3994(2023).

    [66] V VONÁSEK, R PĔNIČKA, B KOZLÍKOVÁ. Searching multiple approximate solutions in configuration space to guide sampling-based motion planning. Journal of Intelligent and Robotic Systems, 100, 1527-1543(2020).

    [67] M P STRUB, J D GAMMELL. Adaptively informed trees (AIT*) and effort informed trees (EIT*): asymmetric bidirectional sampling-based path planning. International Journal of Robotics Research, 41, 390-417(2022).

    [68] V V ZINAG, S GHOSH. Generalized shape expansion-based motion planning in three-dimensional obstacle-cluttered environment. Journal of Guidance, Control,and Dynamics, 43, 1781-1791(2020).

    [69] Y LIU, Z ZHENG, F QIN. Homotopy based optimal configuration space reduction for anytime robotic motion planning. Chinese Journal of Aeronautics, 34, 364-379(2021).

    [70] R KALA. Homotopic roadmap generation for robot motion planning. Journal of Intelligent and Robotic Systems, 82, 555-575(2016).

    [71] R SANDSTRÖM, D UWACU, J DENNY et al. Topology-guided roadmap construction with dynamic region sampling. IEEE Robotics and Automation Letters, 5, 6161-6168(2020).

    [72] D KIM, S YOON. Simultaneous planning of sampling and optimization:study on lazy evaluation and configuration free space approximation for optimal motion planning algorithm. Autonomous Robots, 44, 165-181(2020).

    Tools

    Get Citation

    Copy Citation Text

    Weiran YAO, Haoyu TIAN, Ouyang ZHANG, Yi ZENG, Guanghui SUN, Ligang WU. Path Planning with Homotopy Class Constraints for Space Robots[J]. AEROSPACE SHANGHAI, 2024, 41(3): 63

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 1, 2024

    Accepted: --

    Published Online: Sep. 3, 2024

    The Author Email:

    DOI:10.19328/j.cnki.2096-8655.2024.03.007

    Topics