INFRARED, Volume. 45, Issue 11, 1(2024)

Research Progress on CdZnTe Crystal Using Traveling Heater Method

Shang-shu LI1...2 and Chao XU12 |Show fewer author(s)
Author Affiliations
  • 1Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2National Key Laboratory of Infrared Detection Technologies, Shanghai 200083, China
  • show less
    References(56)

    [1] [1] Zappettini A. Cadmium Telluride and Cadmium Zinc Telluride [M]. Duxford: Woodhead Publishing, 2019.

    [2] [2] Iniewski K. CZT Detector Technology for Medical Imaging [J]. Journal of Instrumentation, 2014, 9(11): C11001.

    [3] [3] Capper P, Garland J, Kasap S, et al. Mercury Cadmium Telluride: Growth, Properties, and Applications [M]. Hoboken: John Wiley & Sons, Inc, 2010.

    [4] [4] Gu R, Lei W, Antoszewski J, et al. Investigation of Substrate Effects on Interface Strain and Defect Generation in MBE-Grown HgCdTe [J]. Journal of Electronic Materials, 2016, 45(9): 4596-4602.

    [5] [5] Triboulet R. Fundamentals of the CdTe and CdZnTe Bulk Growth [J]. Physica Status Solidi (c), 2005, 2(5): 1556-1565.

    [6] [6] Triboulet R, Didier G. Growth of ZnTe by Stoichiometric and off Stoichiometric Zone Refining [J]. Journal of Crystal Growth, 1975, 28(1): 29-35.

    [7] [7] Triboulet R, Legros R, Heurlet A, et al. Properties of CdTe Crystals Grown by THM Using Cd as the Solvent [J]. Journal of Crystal Growth, 1985, 72(1-2): 90-96.

    [8] [8] Ohmori M, Iwase Y, Ohno R. High Quality CdTe and Its Application to Radiation Detectors [J]. Materials Science and Engineering: B, 1993, 16(1-3): 283-290.

    [9] [9] Funaki M, Ozaki T, Satoh K, et al. Growth and Characterization of CdTe Single Crystals for Radiation Detectors [J]. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 436(1-2): 120-126.

    [10] [10] Shiraki H, Funaki M, Ando Y. et al. Improvement of the Productivity in the Growth of CdTe Single Crystal by THM for the New PET System [C]. Honolulu: 2007 IEEE Nuclear Science Symposium Conference, 2007.

    [11] [11] Shiraki H, Funaki M, Ando Y, et al. THM Growth and Characterization of 100 mm Diameter CdTe Single Crystals [J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 1717-1723.

    [12] [12] Chen H, Awadalla S A, Iniewski K, et al. Characterization of Large Cadmium Zinc Telluride Crystals Grown by Traveling Heater Method [J]. Journal of Applied Physics, 2008, 103(1): 014903.

    [13] [13] MacKenzie J, Kumar F J, Chen H. Advancements in THM-Grown CdZnTe for Use as Substrates for HgCdTe [J]. Journal of Electronic Materials, 2013, 42(11): 3129-3132.

    [14] [14] Andresen B F, Fulop G F, Hanson C M, et al. Bulk Growth and Surface Characterization of Epitaxy Ready Cadmium Zinc Telluride Substrates for Use in IR Imaging Applications [C]. SPIE, 2017, 10177: 1017717.

    [15] [15] Miller J L, Andresen B F, Norton P R, et al. Bulk Characterization and Surface Analysis of Epitaxy Ready Cadmium Zinc Telluride Substrates for Use in IRFPA Manufacturing for IR Imaging [C]. SPIE, 2018, 10624: 106240X.

    [16] [16] Sheahan T, Martinez B, Cooper M D, et al. Chemomechanical Polishing Methods and Surface Metrology of Cadmium Zinc Telluride Substrates Suitable for IRFPA Production [C]. SPIE, 2019, 11002: 110020P.

    [17] [17] Haloui A, Feutelais Y, Legendre B. Experimental Study of the Ternary System Cd-Te-Zn [J]. Journal of Alloys and Compounds, 1997, 260(1): 179-192.

    [18] [18] Greenberg J H. P-T-X Phase Equilibrium and Vapor Pressure Scanning of Non-stoichiometry in the Cd-Zn-Te System [J]. Progress in Crystal Growth and Characterization of Materials, 2003, 47(2-3): 196-238.

    [19] [19] Yu T C, Brebrick R F. The Hg-Cd-Zn-Te Phase Diagram [J]. Journal of Phase Equilibria, 1992, 13(5): 476-496.

    [20] [20] Wald F V. Self-compensation in CdTe and ZnTe Crystals Grown from Indium Solvents [J]. Physica Status Solidi (a), 1976, 38(1): 253-259.

    [21] [21] Greenberg J H, V.N. Guskov. Vapor Pressure Scanning of Non-stoichiometry in Cd0.9Zn0.1Te1± and Cd0.85Zn0.15Te1± [J]. Journal of Crystal Growth, 2006, 289(2): 552-558.

    [22] [22] Ikhmayies, S J. Using Thermo-calc Software to Produce the Phase Diagram of Zn-Te System [J]. Journal of Energy Systems, 2020, 4(3): 88-95.

    [23] [23] Shiraki H, Funaki M, Ando Y, et al. Improvement of the Productivity in the THM Growth of CdTe Single Crystal as Nuclear Radiation Detector [J]. IEEE Transactions on Nuclear Science, 2010, 57(1): 395-399.

    [24] [24] Chen H, Awadalla S A, Mackenzie J, et al. Characterization of Traveling Heater Method (THM) Grown Cd0.9Zn0.1Te Crystals [J]. IEEE Transactions on Nuclear Science, 2007, 54(4): 811-816.

    [25] [25] Roy U N, Gueorguiev A, Weiller S, et al. Growth of Spectroscopic Grade Cd0.9Zn0.1Te:In by THM Technique [J]. Journal of Crystal Grow-th, 2009, 312(1): 33-36.

    [26] [26] Roy U N, Weiler S, Stein J. Growth and Interface Study of 2 in Diameter CdZnTe by THM Technique [J]. Journal of Crystal Growth, 2010, 312(19): 2840-2845.

    [27] [27] James R B, Roy U N, Franks L A, et al. Unseeded Growth of CdZnTe:In by THM Technique [C]. SPIE, 2009, 7449: 74490U.

    [28] [28] Triboulet R, Van K P, Didier G. Cold Travelling Heater Method, a Novel Technique of Synthesis, Purification and Growth of CdTe and ZnTe [J]. Journal of Crystal Growth, 1990, 101: 216-220.

    [29] [29] Mokri A E, Triboulet R, Lusson A, et al. Growth of Large, High Purity, Low Cost, Uniform CdZnTe Crystals by the “Cold Travelling Heater Method” [J]. Journal of Crystal Growth, 1994, 138: 168-174.

    [30] [30] Wang Y, Kudo K, Inatomi Y, et al. Growth Interface of CdZnTe Grown from Te Solution with THM Technique Under Static Magnetic Field [J]. Journal of Crystal Growth, 2005, 284(3-4): 406-411.

    [31] [31] Zhou B, Jie W, Wang T, et al. Growth and Characterization of Detector-grade Cd0.9Zn0.1Te Crystals by the Traveling Heater Method with the Accelerated Crucible Rotation Technique [J]. Journal of Electronic Materials, 2018, 47(2): 1125-1130.

    [32] [32] Funaki M, Shiraki H, Tamaki M, et al. Development of THM Growth Technology for CdTe Radiation Detectors and the Applications [C]. MRS, 2009, 1164: L03-02.

    [33] [33] Peterson J H, Fiederle M, Derby J J. Analysis of the Traveling Heater Method for the Growth of Cadmium Telluride [J]. Journal of Crystal Growth, 2016, 454: 45-58.

    [34] [34] Du Y, Tkaczyk J E, Abramovich G, et al. Correlation Between Te Inclusion Inspection by IR with Spectral Response Performance for CZT Sensor Pack Detectors [C]. Valencia: 2011 IEEE Nuclear Science Symposium Conference, 2011.

    [35] [35] Washington A L, Wright J S, Duff M C, et al. Change in the Bulk Resistivity of CdZnTe with Selected Near IR Light [C]. SPIE, 2014, 9213: 92131K.

    [36] [36] Wright J S, Washington A L I, Duff M C, et al. The Effect of Subbandgap Illumination on the Bulk Resistivity of CdZnTe [J]. Journal of Electronic Materials, 2013, 42(11): 3119-3124.

    [37] [37] Bolotnikov A E, Abdul-Jabbar N M, Babalola O S, et al. Effects of Te Inclusions on the Performance of CdZnTe Radiation Detectors [J]. IEEE Transactions on Nuclear Science, 2008, 55(5): 2757-2764.

    [38] [38] Zhou B, Jie W, Wang T, et al. Modification of Growth Interface of CdZnTe Crystals in THM Process by ACRT [J]. Journal of Crystal Growth, 2018, 483: 281-284.

    [39] [39] Wang Y, Kudo K, Inatomi Y, et al. Growth and Structure of CdZnTe Crystal From Te Solution with THM Technique Under Static Magnetic Field [J]. Journal of Crystal Growth, 2005, 275(1-2): 1551-1556.

    [40] [40] Roy U N, Burger A, James R B. Growth of CdZnTe Crystals by the Traveling Heater Method [J]. Journal of Crystal Growth, 2013, 379: 57-62.

    [41] [41] Burger A, Roy U N, Franks L A, et al. Macro- and Microscopic Growth Interface Study of CdZnTe Ingots by THM Technique [C]. SPIE, 2010, 7805: 780502.

    [42] [42] Roy U N, Weiler S, Stein J, et al. Growth of Detector-grade CZT by Traveling Heater Method (THM) - An Advancement [C]. MRS, 2011, 1341: 29-37.

    [43] [43] Yeckel A, Derby J J. Effects of a Traveling Magnetic Field on Vertical Gradient Freeze Growth of Cadmium Zinc Telluride [C]. SPIE, 2011, 8142: 814214.

    [44] [44] Yeckel A, Derby J J. The Prospects for Traveling Magnetic Fields to Affect Interface Shape in the Vertical Gradient Freeze Growth of Cadmium Zinc Telluride [J]. Journal of Crystal Growth, 2013, 364: 133-144.

    [45] [45] Roy U N, Weiler S, Stein J, et al. Size and Distribution of Te Inclusions in THM As-grown CZT Wafers: The Effect of the Rate of Crystal Cooling [J]. Journal of Crystal Growth, 2011, 332(1): 34-38.

    [46] [46] Xu L, Jie W, Bolotnikov A E, et al. Concentration of Extended Defects in CdZnTe Single Crystals: Effects of Cooling Rate After Growth [J]. Journal of Crystal Growth, 2012, 355(1): 84-87.

    [47] [47] Awadalla S A, Mackenzie J, Chen H, et al. Characterization of Detector-grade CdZnTe Crystals Grown by Traveling Heater Method (THM) [J]. Journal of Crystal Growth, 2010, 312(4): 507-513.

    [48] [48] MacKenzie J, Chen H, Awadalla S A, et al. Recent Advances in THM CZT for Nuclear Radiation Detection [C]. MRS, 2009, 1164: L10-04.

    [49] [49] Azoulay M, Rotter S, Gafni G. Zinc Segregation in CdZnTe Grown Under Cd/Zn Partial Pressure Control [J]. Journal of Crystal Growth, 1992, 117(1-4): 276-280.

    [50] [50] Zhang N, Yeckel A, Burger A, et al. Anomalous Segregation During Electrodynamic Gradient Freeze Growth of Cadmium Zinc Telluride [J]. Journal of Crystal Growth, 2011, 325(1): 10-19.

    [51] [51] Roy U N, Weiler S, Stein J, et al. Zinc Mapping in THM Grown Detector Grade CZT [J]. Journal of Crystal Growth, 2012, 347(1): 53-55.

    [52] [52] Chen H, Awadalla S A, Redden R, et al. High-performance, Large-volume THM CdZnTe Detectors for Medical Imaging and Homeland Security Applications [C]. San Diego: 2006 IEEE Nuclear Science Symposium Conference, 2006.

    [53] [53] Franks L A, Derby J J, James R B, et al. Segregation and Interface Shape Control During EDG Growth of CZT Crystals [C]. SPIE, 2011, 8142: 814216.

    [54] [54] Franks L A, Roy U N, James R B, et al. Growth, Characterization and Fabrication of Thick Detectors From As-grown Cd0.9Zn0.1Te∶ In by Traveling Heater Method [C]. SPIE, 2011, 8142: 814215.

    [55] [55] Triboulet R. Handbook of Crystal Growth (Second Edition) [M]. Amsterdam: Elsevier Publishing Company Ltd, 2015.

    [56] [56] Dropka N, Holena M. Application of Artificial Neural Networks in Crystal Growth of Electronic and Opto-electronic Materials [J]. Crystals, 2020, 10(8): 663.

    Tools

    Get Citation

    Copy Citation Text

    LI Shang-shu, XU Chao. Research Progress on CdZnTe Crystal Using Traveling Heater Method[J]. INFRARED, 2024, 45(11): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 10, 2024

    Accepted: Dec. 25, 2024

    Published Online: Dec. 25, 2024

    The Author Email:

    DOI:10.3969/j.issn.1672-8785.2024.11.001

    Topics