Laser & Optoelectronics Progress, Volume. 61, Issue 14, 1428004(2024)

Cauchy Nonnegative Matrix Factorization for Hyperspectral Unmixing Based on Graph Laplacian Regularization

Shanxue Chen1 and Shaohua Xu2、*
Author Affiliations
  • 1Engineering Research Center of Mobile Communications of the Ministry of Education, School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • 2Chongqing Key Laboratory of Mobile Communications Technology, School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • show less
    Figures & Tables(19)
    Comparison of different loss function models
    Distribution of pixel and abundance in local neighborhood
    Flow of CNMF-GLR algorithm
    Spectra of 4 ground objects in the Jasper Ridge dataset
    Comparison of average DSAD and ERMSE in different neighborhoods
    Average DSAD and ERMSE of CNMF-GLR under different λ1 and λ2 values
    RGB display on the real data set
    Comparison between end element spectra extracted by CNMF-GLR and reference spectra
    Abundance image comparison of different algorithms in the Jasper Ridge dataset
    Comparison between end element spectra extracted by CNMF-GLR and reference spectra
    Abundance image comparison of different algorithms in Urban dataset
    • Table 1. Comparison of average DSAD of various algorithms under the influence of Gaussian white noise

      View table

      Table 1. Comparison of average DSAD of various algorithms under the influence of Gaussian white noise

      SNR /dBMVCNMF /arb.unitsCauchyNM-F /arb.unitsL21NMF-SSR /arb.unitsDSGLSU /arb.unitsSSCNMF /arb.unitsCNMF-GLR /arb.units
      100.355360.309560.227860.247860.228970.20864
      150.224660.206870.176570.197560.188640.17056
      200.152840.137860.097640.102580.101890.09540
      250.078670.072460.045560.070450.058740.04626
      300.018970.037650.007610.010870.009960.00789
    • Table 2. ERMSE comparison of various algorithms under the influence of Gaussian white noise

      View table

      Table 2. ERMSE comparison of various algorithms under the influence of Gaussian white noise

      SNR /dBMVCNMF /arb.unitsCauchyNM-F /arb.unitsL21NMF-SSR/arb.unitsDSGLSU/arb.units

      SSCNMF /

      arb.units

      CNMF-GLR /

      arb.units

      100.0874960.0712130.0698640.0824560.0708960.066233
      150.0578970.0610120.0478920.0489640.0521680.047223
      200.0488870.0533960.0346870.0412680.0398640.032899
      250.0287940.0367650.0137860.0204890.0189640.014896
      300.0125600.0115870.0069870.0096450.0086500.007231
    • Table 3. Comparison of average DSAD of various algorithms under the influence of salt and pepper noise

      View table

      Table 3. Comparison of average DSAD of various algorithms under the influence of salt and pepper noise

      Grade/

      arb.units

      MVCNMF/

      arb.units

      CauchyNM-F/ arb.units

      L21NMF-SSR/

      arb.units

      DSGLSU/

      arb.units

      SSCNMF/

      arb.units

      CNMF-GLR/

      arb.units

      0.020.158140.129480.097640.102460.089790.08245
      0.040.176870.136870.107880.137650.098640.08978
      0.060.180940.152550.118680.158670.117360.09877
      0.080.199240.167860.132540.174860.123870.11187
      0.10.239480.163560.147860.187650.122780.11089
    • Table 4. ERMSE comparison of various algorithms under the influence of salt and pepper noise

      View table

      Table 4. ERMSE comparison of various algorithms under the influence of salt and pepper noise

      Grade /arb.unitsMVCNMF /arb.unitsCauchyNM-F /arb.unitsL21NMF-SSR /arb.unitsDSGLSU /arb.units

      SSCNMF /

      arb.units

      CNMF-GLR /

      arb.units

      0.020.0921490.0684970.0567980.0784650.0612860.039765
      0.040.1468360.0876580.0624880.0986540.0621860.057865
      0.060.2208170.1132440.1282470.1432840.0876570.064692
      0.080.3014870.1546580.1336840.1676870.0924680.070258
      0.10.3879960.1557650.1389940.1932450.1028650.079864
    • Table 5. Comparison of DSAD values of different algorithms in the Jasper Ridge dataset

      View table

      Table 5. Comparison of DSAD values of different algorithms in the Jasper Ridge dataset

      End member

      MVCNMF /

      arb.units

      CauchyNM-F / arb.units

      L21NMF-SSR /

      arb.units

      DSGLSU /

      arb.units

      SSCNMF /

      arb.units

      CNMF-GLR/

      arb.units

      Runtime /min8.7610.2412.6413.2514.3713.75
      water0.139890.087650.062760.072650.076860.03213
      vegetation0.122650.120230.110820.120130.112650.06025
      soil0.178940.172140.157860.168960.158760.11611
      road0.163790.090650.066860.096850.092410.05312
      mean0.151310.117660.099570.114640.110170.06541
    • Table 6. Comparison of average ERMSE values of different algorithms in the Jasper Ridge dataset

      View table

      Table 6. Comparison of average ERMSE values of different algorithms in the Jasper Ridge dataset

      MVCNMF /

      arb.units

      CauchyNM-F /arb.units

      L21NMF-SSR /

      arb.units

      DSGLSU /

      arb.units

      SSCNMF /

      arb.units

      CNMF-GLR /

      arb.units

      0.0672620.0472740.0311310.0428620.0386520.019101
    • Table 7. Comparison of DSAD values of different algorithms in Urban dataset

      View table

      Table 7. Comparison of DSAD values of different algorithms in Urban dataset

      End member

      MVCNMF /

      arb.units

      CauchyNM-F /arb.units

      L21NMF-SSR /

      arb.units

      DSGLSU /

      arb.units

      SSCNMF /

      arb.units

      CNMF-GLR /

      arb.units

      Runtime /min12.1515.7616.8816.7418.2417.68
      asphalt0.345870.302210.220470.245210.102750.11346
      grass0.327860.318650.257380.301250.058600.03061
      tree0.201660.216360.131040.201060.039980.03284
      roof0.227650.201680.141070.192010.146870.14558
      mean0.275760.259720.187490.234890.087050.08062
    • Table 8. Comparison of average ERMSE values of different algorithms in Urban dataset

      View table

      Table 8. Comparison of average ERMSE values of different algorithms in Urban dataset

      MVCNMF /

      arb.units

      CauchyNM-F /arb.units

      L21NMF-SSR /

      arb.units

      DSGLSU /

      arb.units

      SSCNMF /

      arb.units

      CNMF-GLR /

      arb.units

      0.283650.265420.1328510.186520.0821450.064547
    Tools

    Get Citation

    Copy Citation Text

    Shanxue Chen, Shaohua Xu. Cauchy Nonnegative Matrix Factorization for Hyperspectral Unmixing Based on Graph Laplacian Regularization[J]. Laser & Optoelectronics Progress, 2024, 61(14): 1428004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Nov. 6, 2023

    Accepted: Nov. 27, 2023

    Published Online: Jul. 8, 2024

    The Author Email: Shaohua Xu (535849135@qq.com)

    DOI:10.3788/LOP232437

    CSTR:32186.14.LOP232437

    Topics