Chinese Journal of Lasers, Volume. 43, Issue 2, 205002(2016)

Method of Brillouin Scattering Spectrum Character Extraction Based on Genetic Algorithm and Quantum-Behaved Particle Swarm Optimization Hybrid Algorithm

Zhang Yanjun1,2、*, Xu Jinrui1,2, and Fu Xinghu1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(16)

    [1] [1] Liu Kun, Feng Bowen, Liu Tiegen, et al.. Continuous distributed fiber strain location sensing based on optical frequency domain reflectometry[J]. Chinese J Lasers, 2015, 42(5): 0505006.

    [2] [2] Wang Rugang, Zhou Liuying, Zhang Xuping. Fabrication and performance research of high-stability Brillouin ring laser[J]. Journal of Optoelectronics Laser, 2013, 24(10): 1884-1888.

    [3] [3] Li Yongqian, Li Xiaojuan, An Qi. New method to improve the performance of Brillouin optical time domain reflectometer system[J]. Acta Optica Sinica, 2015, 35(1): 0106003.

    [4] [4] Liu Yin, Fu Guangwei, Zhang Yanjun, et al.. A novel method for Brillouin scattering spectrum of distributed sensing systems based on radial basis function neural networks to extract features[J]. Acta Optica Sinica, 2012, 32(2): 0206002.

    [6] [6] Zhang Y J, Li D, Fu X H, et al.. An improved Levenberg-Marquardt algorithm for extracting the features of Brillouin scattering spectrum [J]. Measurement Science and Technology, 2013, 24(1): 015204.

    [7] [7] Zhang Y J, Yu C J, Fu X H, et al.. An improved Newton algorithm based on finite element analysis for extracting the Brillouin scattering spectrum features[J]. Measurement, 2014, 51: 310-314.

    [8] [8] Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-mode optical fibers[J]. J Lightwave Technol, 1997, 15(10): 1842-1851.

    [9] [9] Liu Yin, Zhang Yanjun, Li Da, et al.. Hybrid algorithm particle swarm optimization and Levenberg-Marquardt for Brillouin scattering spectrum of distributed sensing system[J]. Chinese J Lasers, 2012, 39(4): 0415001.

    [10] [10] Zhang Zhihui, Zhang Peng, Han Shunli. Strain characteristic extraction of Brillouin spectrum based on general regression neural network [J]. Chinese J Lasers, 2013, 40(s1): s105008.

    [11] [11] Ida T, Ando M, Toraya H. Extended Pseudo-Voigt function for approximating the Voigt profile[J]. Journal of Applied Crystallography, 2000, 33(6): 1311-1316.

    [12] [12] Tang Yunhai, Wu Quanying, Chen Xiaoyi, et al.. Optimization design of the Meridian line of progressive addition lenses based on genetic algorithm[J]. Acta Optica Sinica, 2014, 34(9): 0922005.

    [13] [13] Hong Lei. The study of particle swarm optimization and artificial fish swarm algorithm[J]. Software, 2014, 35(8): 83-85.

    [14] [14] Xi Maolong, Sheng Xinyi, Sun Jun. Quantum-behaved particle swarm optimization algorithm with crossover operator to multi-dimension problems[J]. Journal of Computer Applications, 2015, 35(3): 680-684.

    [15] [15] Wang Xiaogen, Long Haixia, Sun Jun. Quantum-behaved particle swarm optimization based on Gaussian disturbance[J]. Application Research of Computers, 2010, 27(6): 2093-2096.

    [16] [16] Kong Qingqin, Sun Jun, Xu Wenbo. Improved algorithm based on quantum-behaved particle swarm optimization[J]. Computer Engineering and Applications, 2007, 43(28): 58-60.

    CLP Journals

    [1] Meng Yanjie, Zha Jianfeng. Application of Kuwahara Filter in Brillouin Optical Time-Domain Analysis Sensing Image Denoising[J]. Laser & Optoelectronics Progress, 2018, 55(7): 70607

    Tools

    Get Citation

    Copy Citation Text

    Zhang Yanjun, Xu Jinrui, Fu Xinghu. Method of Brillouin Scattering Spectrum Character Extraction Based on Genetic Algorithm and Quantum-Behaved Particle Swarm Optimization Hybrid Algorithm[J]. Chinese Journal of Lasers, 2016, 43(2): 205002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical communication

    Received: Jul. 15, 2015

    Accepted: --

    Published Online: Jan. 25, 2016

    The Author Email: Yanjun Zhang (yjzhang@ysu.edu.cn)

    DOI:10.3788/cjl201643.0205002

    Topics