Journal of Atmospheric and Environmental Optics, Volume. 20, Issue 3, 281(2025)
Simulation on measurement errors of 828 nm water vapor differential absorption lidar
[1] Chahine M T. The hydrological cycle and its influence on climate[J]. Nature, 359, 373-380(1992).
[2] Carroll B J, Nehrir A R, Kooi S A et al. Differential absorption lidar measurements of water vapor by the high altitude lidar observatory (HALO): Retrieval framework and first results[J]. Atmospheric Measurement Techniques, 15, 605-626(2022).
[3] He J, Sun K W, Ren C et al. Investigation of relationship between aerosol optical properties and relative humidity in China's offshore[J]. Journal of Atmospheric and Environmental Optics, 19, 698-716(2024).
[4] Ferreira A P, Nieto R, Gimeno L. Completeness of radiosonde humidity observations based on the integrated global radiosonde archive[J]. Earth System Science Data, 11, 603-627(2019).
[5] Turner D D, Lesht B M, Clough S A et al. Dry bias and variability in vaisala RS80-H radiosondes: The ARM experience[J]. Journal of Atmospheric and Oceanic Technology, 20, 117-132(2003).
[6] Zhang H P. Data Processing and Error Analysis of Differential Absorption Lidar for CO2 Column Concentration Measurements[D](2019).
[7] Rocken C, Hove T V, Johnson J et al. GPS/STORM: GPS sensing of atmospheric water vapor for meteorology[J]. Journal of Atmospheric and Oceanic Technology, 12, 468-478(1995).
[8] Ralph F M, Dettinger M D. Storms, floods, and the science of atmospheric rivers[J]. Eos, Transactions American Geophysical Union, 92, 265-266(2011).
[9] Machol J L, Ayers T, Schwenz K T et al. Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor[J]. Applied Optics, 43, 3110-3121(2004).
[10] Champollion C, Masson F, Bouin M N et al. GPS water vapour tomography: Preliminary results from the ESCOMPTE field experiment[J]. Atmospheric Research, 74, 253-274(2005).
[11] Neely I, Thayer J P. Raman lidar profiling of tropospheric water vapor over Kangerlussuaq, Greenland[J]. Journal of Atmospheric and Oceanic Technology, 28, 1141-1148(2011).
[12] Melfi S H, Lawrence J, McCormick M P. Observation of Raman scattering by water vapor in the atmosphere[J]. Applied Physics Letters, 15, 295-297(1969).
[13] Ferrare R A, Melfi S H, Whiteman D N et al. A comparison of water vapor measurements made by Raman lidar and radiosondes[J]. Journal of Atmospheric and Oceanic Technology, 12, 1177(1995).
[14] Zhang Y X. Precise Detection of Atmospheric Aerosol Optical Parameters Using Multi-Wavelength and Raman Lidar[D](2019).
[15] Siozos P, Psyllakis G, Samartzis P C et al. Autonomous differential absorption laser device for remote sensing of atmospheric greenhouse gases[J]. Remote Sensing, 14, 460(2022).
[16] Hong G L, Li J T, Wang J Y et al. Advance of ground based differential absorption lidar at 0.94 μm[J]. Infrared and Laser Engineering, 48, 1203009(2019).
[17] Murray E R, Hake R D, Van Der Laan J E et al. Atmospheric water vapor measurements with an infrared (10-μm) differential‐absorption lidar system[J]. Applied Physics Letters, 28, 542-543(1976).
[18] Rothe K W. Monitoring of various atmospheric constituents using a c.w. chemical hydrogen/deuterium laser and a pulsed carbon dioxide laser[J]. Radio and Electronic Engineer, 50, 567-567(1980).
[19] Werner C, Herrmann H. Lidar measurements of the vertical absolute humidity distribution in the boundary layer[J]. Journal of Applied Meteorology, 20, 476-481(1981).
[20] Zuev V V, Zuev V E, Makushkin Y S et al. Laser sounding of atmospheric humidity: Experiment[J]. Applied Optics, 22, 3742-3746(1983).
[21] Higdon N S, Browell E V, Ponsardin P et al. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols[J]. Applied Optics, 33, 6422-6438(1994).
[22] Wulfmeyer V, Bösenberg J. Ground-based differential absorption lidar for water-vapor profiling: Assessment of accuracy, resolution, and meteorological applications[J]. Applied Optics, 37, 3825-3844(1998).
[23] Bruneau D, Quaglia P, Flamant C et al. Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description[J]. Applied Optics, 40, 3450-3461(2001).
[24] Vogelmann H, Trickl T. Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station[J]. Applied Optics, 47, 2116-2132(2008).
[25] Wagner G, Behrendt A, Wulfmeyer V et al. High-power Ti: Sapphire laser at 820 nm for scanning ground-based water-vapor differential absorption lidar[J]. Applied Optics, 52, 2454-2469(2013).
[26] Nehrir A R, Repasky K S, Carlsten J L et al. Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL)[J]. Journal of Atmospheric and Oceanic Technology, 26, 733-745(2009).
[27] Nehrir A R, Repasky K S, Carlsten J L. Eye-safe diode-laser-based micropulse differential absorption lidar (DIAL) for water vapor profiling in the lower troposphere[J]. Journal of Atmospheric and Oceanic Technology, 28, 131-147(2011).
[28] Nehrir A R, Repasky K S, Carlsten J L. Micropulse water vapor differential absorption lidar: Transmitter design and performance[J]. Optics Express, 20, 25137-25151(2012).
[29] Spuler S M, Repasky K S, Morley B et al. Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor[J]. Atmospheric Measurement Techniques, 8, 1073-1087(2015).
[30] Spuler S M, Hayman M, Stillwell R A et al. MicroPulse DIAL (MPD)-a diode-laser-based lidar architecture for quantitative atmospheric profiling[J]. Atmospheric Measurement Techniques, 14, 4593-4616(2021).
[31] Liu Q, Janicot S, Georges P et al. Coherent combination of micropulse tapered amplifiers at 828 nm for direct-detection LIDAR applications[J]. Optics Letters, 48, 489-492(2023).
[32] Newsom R K, Turner D D, Lehtinen R et al. Evaluation of a compact broadband differential absorption lidar for routine water vapor profiling in the atmospheric boundary layer[J]. Journal of Atmospheric and Oceanic Technology, 37, 47-65(2020).
[33] Yu J H, Cheng Y, Kong Z et al. Broadband continuous-wave differential absorption lidar for atmospheric remote sensing of water vapor[J]. Optics Express, 32, 3046-3061(2024).
[34] Fang L. Near-Surface Water Vapor Profile Detection Technology Based on Continuous Wave Imaging Lidar[D](2022).
[35] Wirth M, Fix A, Mahnke P et al. The airborne multi-wavelength water vapor differential absorption lidar WALES: System design and performance[J]. Applied Physics B, 96, 201-213(2009).
[36] Hong G L, Li J T, Kong W et al. 935 nm differential absorption lidar system and water vapor profiles in convective boundary layer[J]. Acta Optica Sinica, 37, 201003(2017).
[37] Chen S Z. Lidar Simulation and Echo Retrival Methods of Water Vapor Detection[D](2014).
[38] Li J T. Study on High Resolution Differential Absorption Lidar and All-Time Water Vapor Profiling[D](2019).
[40] Spinhirne J D. Micro pulse lidar[J]. IEEE Transactions on Geoscience and Remote Sensing, 31, 48-55(1993).
Get Citation
Copy Citation Text
Jiaming SONG, Ning XU, Yupeng CHANG, Yuan CHENG, Zheng KONG, Liang MEI. Simulation on measurement errors of 828 nm water vapor differential absorption lidar[J]. Journal of Atmospheric and Environmental Optics, 2025, 20(3): 281
Category: "Advanced technology of lidar and its application in atmospheric environment" Albun
Received: Dec. 2, 2024
Accepted: --
Published Online: Jun. 9, 2025
The Author Email: