Journal of Atmospheric and Environmental Optics, Volume. 20, Issue 3, 281(2025)

Simulation on measurement errors of 828 nm water vapor differential absorption lidar

SONG Jiaming, XU Ning, CHANG Yupeng, CHENG Yuan, KONG Zheng, and MEI Liang
Author Affiliations
  • School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
  • show less
    References(40)

    [1] Chahine M T. The hydrological cycle and its influence on climate[J]. Nature, 359, 373-380(1992).

    [2] Carroll B J, Nehrir A R, Kooi S A et al. Differential absorption lidar measurements of water vapor by the high altitude lidar observatory (HALO): Retrieval framework and first results[J]. Atmospheric Measurement Techniques, 15, 605-626(2022).

    [3] He J, Sun K W, Ren C et al. Investigation of relationship between aerosol optical properties and relative humidity in China's offshore[J]. Journal of Atmospheric and Environmental Optics, 19, 698-716(2024).

    [4] Ferreira A P, Nieto R, Gimeno L. Completeness of radiosonde humidity observations based on the integrated global radiosonde archive[J]. Earth System Science Data, 11, 603-627(2019).

    [5] Turner D D, Lesht B M, Clough S A et al. Dry bias and variability in vaisala RS80-H radiosondes: The ARM experience[J]. Journal of Atmospheric and Oceanic Technology, 20, 117-132(2003).

    [6] Zhang H P. Data Processing and Error Analysis of Differential Absorption Lidar for CO2 Column Concentration Measurements[D](2019).

    [7] Rocken C, Hove T V, Johnson J et al. GPS/STORM: GPS sensing of atmospheric water vapor for meteorology[J]. Journal of Atmospheric and Oceanic Technology, 12, 468-478(1995).

    [8] Ralph F M, Dettinger M D. Storms, floods, and the science of atmospheric rivers[J]. Eos, Transactions American Geophysical Union, 92, 265-266(2011).

    [9] Machol J L, Ayers T, Schwenz K T et al. Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor[J]. Applied Optics, 43, 3110-3121(2004).

    [10] Champollion C, Masson F, Bouin M N et al. GPS water vapour tomography: Preliminary results from the ESCOMPTE field experiment[J]. Atmospheric Research, 74, 253-274(2005).

    [11] Neely I, Thayer J P. Raman lidar profiling of tropospheric water vapor over Kangerlussuaq, Greenland[J]. Journal of Atmospheric and Oceanic Technology, 28, 1141-1148(2011).

    [12] Melfi S H, Lawrence J, McCormick M P. Observation of Raman scattering by water vapor in the atmosphere[J]. Applied Physics Letters, 15, 295-297(1969).

    [13] Ferrare R A, Melfi S H, Whiteman D N et al. A comparison of water vapor measurements made by Raman lidar and radiosondes[J]. Journal of Atmospheric and Oceanic Technology, 12, 1177(1995).

    [14] Zhang Y X. Precise Detection of Atmospheric Aerosol Optical Parameters Using Multi-Wavelength and Raman Lidar[D](2019).

    [15] Siozos P, Psyllakis G, Samartzis P C et al. Autonomous differential absorption laser device for remote sensing of atmospheric greenhouse gases[J]. Remote Sensing, 14, 460(2022).

    [16] Hong G L, Li J T, Wang J Y et al. Advance of ground based differential absorption lidar at 0.94 μm[J]. Infrared and Laser Engineering, 48, 1203009(2019).

    [17] Murray E R, Hake R D, Van Der Laan J E et al. Atmospheric water vapor measurements with an infrared (10-μm) differential‐absorption lidar system[J]. Applied Physics Letters, 28, 542-543(1976).

    [18] Rothe K W. Monitoring of various atmospheric constituents using a c.w. chemical hydrogen/deuterium laser and a pulsed carbon dioxide laser[J]. Radio and Electronic Engineer, 50, 567-567(1980).

    [19] Werner C, Herrmann H. Lidar measurements of the vertical absolute humidity distribution in the boundary layer[J]. Journal of Applied Meteorology, 20, 476-481(1981).

    [20] Zuev V V, Zuev V E, Makushkin Y S et al. Laser sounding of atmospheric humidity: Experiment[J]. Applied Optics, 22, 3742-3746(1983).

    [21] Higdon N S, Browell E V, Ponsardin P et al. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols[J]. Applied Optics, 33, 6422-6438(1994).

    [22] Wulfmeyer V, Bösenberg J. Ground-based differential absorption lidar for water-vapor profiling: Assessment of accuracy, resolution, and meteorological applications[J]. Applied Optics, 37, 3825-3844(1998).

    [23] Bruneau D, Quaglia P, Flamant C et al. Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description[J]. Applied Optics, 40, 3450-3461(2001).

    [24] Vogelmann H, Trickl T. Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station[J]. Applied Optics, 47, 2116-2132(2008).

    [25] Wagner G, Behrendt A, Wulfmeyer V et al. High-power Ti: Sapphire laser at 820 nm for scanning ground-based water-vapor differential absorption lidar[J]. Applied Optics, 52, 2454-2469(2013).

    [26] Nehrir A R, Repasky K S, Carlsten J L et al. Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL)[J]. Journal of Atmospheric and Oceanic Technology, 26, 733-745(2009).

    [27] Nehrir A R, Repasky K S, Carlsten J L. Eye-safe diode-laser-based micropulse differential absorption lidar (DIAL) for water vapor profiling in the lower troposphere[J]. Journal of Atmospheric and Oceanic Technology, 28, 131-147(2011).

    [28] Nehrir A R, Repasky K S, Carlsten J L. Micropulse water vapor differential absorption lidar: Transmitter design and performance[J]. Optics Express, 20, 25137-25151(2012).

    [29] Spuler S M, Repasky K S, Morley B et al. Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor[J]. Atmospheric Measurement Techniques, 8, 1073-1087(2015).

    [30] Spuler S M, Hayman M, Stillwell R A et al. MicroPulse DIAL (MPD)-a diode-laser-based lidar architecture for quantitative atmospheric profiling[J]. Atmospheric Measurement Techniques, 14, 4593-4616(2021).

    [31] Liu Q, Janicot S, Georges P et al. Coherent combination of micropulse tapered amplifiers at 828 nm for direct-detection LIDAR applications[J]. Optics Letters, 48, 489-492(2023).

    [32] Newsom R K, Turner D D, Lehtinen R et al. Evaluation of a compact broadband differential absorption lidar for routine water vapor profiling in the atmospheric boundary layer[J]. Journal of Atmospheric and Oceanic Technology, 37, 47-65(2020).

    [33] Yu J H, Cheng Y, Kong Z et al. Broadband continuous-wave differential absorption lidar for atmospheric remote sensing of water vapor[J]. Optics Express, 32, 3046-3061(2024).

    [34] Fang L. Near-Surface Water Vapor Profile Detection Technology Based on Continuous Wave Imaging Lidar[D](2022).

    [35] Wirth M, Fix A, Mahnke P et al. The airborne multi-wavelength water vapor differential absorption lidar WALES: System design and performance[J]. Applied Physics B, 96, 201-213(2009).

    [36] Hong G L, Li J T, Kong W et al. 935 nm differential absorption lidar system and water vapor profiles in convective boundary layer[J]. Acta Optica Sinica, 37, 201003(2017).

    [37] Chen S Z. Lidar Simulation and Echo Retrival Methods of Water Vapor Detection[D](2014).

    [38] Li J T. Study on High Resolution Differential Absorption Lidar and All-Time Water Vapor Profiling[D](2019).

    [40] Spinhirne J D. Micro pulse lidar[J]. IEEE Transactions on Geoscience and Remote Sensing, 31, 48-55(1993).

    Tools

    Get Citation

    Copy Citation Text

    Jiaming SONG, Ning XU, Yupeng CHANG, Yuan CHENG, Zheng KONG, Liang MEI. Simulation on measurement errors of 828 nm water vapor differential absorption lidar[J]. Journal of Atmospheric and Environmental Optics, 2025, 20(3): 281

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: "Advanced technology of lidar and its application in atmospheric environment" Albun

    Received: Dec. 2, 2024

    Accepted: --

    Published Online: Jun. 9, 2025

    The Author Email:

    DOI:10.3969/j.issn.1673-6141.2025.03.004

    Topics