Acta Optica Sinica, Volume. 44, Issue 10, 1026006(2024)
Methods and Applications of Scattering Light Field Manipulation (Invited)
[1] Goodman J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 66, 1145-1150(1976).
[2] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[3] Nasr M B, Saleh B E A, Sergienko A V et al. Demonstration of dispersion-canceled quantum-optical coherence tomography[J]. Physical Review Letters, 91, 083601(2003).
[4] Kang S, Jeong S, Choi W et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves[J]. Nature Photonics, 9, 253-258(2015).
[5] Freund I. Looking through walls and around corners[J]. Physica A, 168, 49-65(1990).
[6] Fink M. Time reversal of ultrasonic fields. I. Basic principles[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 39, 555-566(1992).
[7] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).
[8] Park J H, Yu Z P, Lee K R et al. Perspective: wavefront shaping techniques for controlling multiple light scattering in biological tissues: toward in vivo applications[J]. APL Photonics, 3, 100901(2018).
[9] Popoff S M, Lerosey G, Carminati R et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 104, 100601(2010).
[10] Popoff S M, Lerosey G, Fink M et al. Controlling light through optical disordered media: transmission matrix approach[J]. New Journal of Physics, 13, 123021(2011).
[11] Yu H, Hillman T R, Choi W et al. Measuring large optical transmission matrices of disordered media[J]. Physical Review Letters, 111, 153902(2013).
[12] Vellekoop I M, Lagendijk A, Mosk A P. Exploiting disorder for perfect focusing[J]. Nature Photonics, 4, 320-322(2010).
[13] Huisman S R, Huisman T J, Goorden S A et al. Programming balanced optical beam splitters in white paint[J]. Optics Express, 22, 8320-8332(2014).
[14] Boniface A, Mounaix M, Blochet B et al. Transmission-matrix-based point-spread-function engineering through a complex medium[J]. Optica, 4, 54-59(2017).
[15] Mao Z Y, Liu H G, Chen X F. Active control of interconversion of spin and orbital angular momentum of light by a scattering system[J]. Physical Review Applied, 18, 024061(2022).
[16] de Aguiar H B, Gigan S, Brasselet S. Polarization recovery through scattering media[J]. Science Advances, 3, e1600743(2017).
[17] Tripathi S, Paxman R, Bifano T et al. Vector transmission matrix for the polarization behavior of light propagation in highly scattering media[J]. Optics Express, 20, 16067-16076(2012).
[18] Cao Z Z, Zhang X B, Osnabrugge G et al. Reconfigurable beam system for non-line-of-sight free-space optical communication[J]. Light: Science & Applications, 8, 69(2019).
[19] Tzang O, Caravaca-Aguirre A M, Wagner K et al. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres[J]. Nature Photonics, 12, 368-374(2018).
[20] Teğin U, Rahmani B, Kakkava E et al. Controlling spatiotemporal nonlinearities in multimode fibers with deep neural networks[J]. APL Photonics, 5, 030804(2020).
[21] Qiao Y Q, Peng Y J, Zheng Y L et al. Adaptive pumping for spectral control of broadband second-harmonic generation[J]. Optics Letters, 43, 787-790(2018).
[22] Miles R B, Lempert W R, Forkey J N. Laser Rayleigh scattering[J]. Measurement Science and Technology, 12, R33-R51(2001).
[23] Drake R M, Gordon J E. Mie scattering[J]. American Journal of Physics, 53, 955-962(1985).
[24] Campion A, Kambhampati P. Surface-enhanced Raman scattering[J]. Chemical Society Reviews, 27, 241-250(1998).
[25] Ippen E P, Stolen R H. Stimulated Brillouin scattering in optical fibers[J]. Applied Physics Letters, 21, 539-541(1972).
[26] Tang L C, Huang J Y, Chang C S et al. New infrared nonlinear optical crystal CsGeBr3: synthesis, structure and powder second-harmonic generation properties[J]. Journal of Physics Condensed Matter, 17, 7275-7286(2005).
[27] Kim M, Choi W, Choi Y et al. Transmission matrix of a scattering medium and its applications in biophotonics[J]. Optics express, 23, 12648-12668(2015).
[28] Zhang H K, Zhang B, Liu Q. OAM-basis transmission matrix in optics: a novel approach to manipulate light propagation through scattering media[J]. Optics Express, 28, 15006-15015(2020).
[29] Conkey D B, Brown A N, Caravaca-Aguirre A M et al. Genetic algorithm optimization for focusing through turbid media in noisy environments[J]. Optics Express, 20, 4840-4849(2012).
[30] Yang J M, He Q Z, Liu L X et al. Anti-scattering light focusing by fast wavefront shaping based on multi-pixel encoded digital-micromirror device[J]. Light: Science & Applications, 10, 149(2021).
[31] Woo C M, Zhao Q, Zhong T T et al. Optimal efficiency of focusing diffused light through scattering media with iterative wavefront shaping[J]. APL Photonics, 7, 046109(2022).
[32] Liu Y, Lai P X, Ma C et al. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (true) light[J]. Nature Communications, 6, 5904(2015).
[33] Wang D F, Zhou E H, Brake J et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation[J]. Optica, 2, 728-735(2015).
[34] Ruan H W, Brake J, Robinson J E et al. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light[J]. Science Advances, 3, eaao5520(2017).
[35] Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 18, 3444-3455(2010).
[36] Jang M, Ruan H W, Zhou H J et al. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation[J]. Optics Express, 22, 14054-14071(2014).
[37] Turpin A, Vishniakou I, Seelig J D. Light scattering control in transmission and reflection with neural networks[J]. Optics Express, 26, 30911-30929(2018).
[38] Luo Y Q, Li H H, Zhang R C et al. Deep learning assisted optical wavefront shaping in disordered medium[J]. Proceedings of SPIE, 10886, 1088612(2019).
[39] Luo Y Q, Yan S X, Li H H et al. Towards smart optical focusing: deep learning-empowered dynamic wavefront shaping through nonstationary scattering media[J]. Photonics Research, 9, B262-B278(2021).
[40] Cheng S F, Li H H, Luo Y Q et al. Artificial intelligence-assisted light control and computational imaging through scattering media[J]. Journal of Innovative Optical Health Sciences, 12, 1930006(2019).
[41] Popoff S, Lerosey G, Fink M et al. Image transmission through an opaque material[J]. Nature Communications, 1, 81(2010).
[42] Lee K R, Park Y K. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor[J]. Nature Communications, 7, 13359(2016).
[43] Yaqoob Z, Psaltis D, Feld M S et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).
[44] Horstmeyer R, Ruan H W, Yang C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue[J]. Nature Photonics, 9, 563-571(2015).
[45] Vellekoop I M, Cui M, Yang C. Digital optical phase conjugation of fluorescence in turbid tissue[J]. Applied Physics Letters, 101, 081108(2012).
[46] Vellekoop I M, van Putten E G, Lagendijk A et al. Demixing light paths inside disordered metamaterials[J]. Optics Express, 16, 67-80(2008).
[47] Vellekoop I M, Aegerter C M. Scattered light fluorescence microscopy: imaging through turbid layers[J]. Optics Letters, 35, 1245-1247(2010).
[48] Boniface A, Dong J, Gigan S. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix[J]. Nature Communications, 11, 6154(2020).
[49] Boniface A, Blochet B, Dong J et al. Noninvasive light focusing in scattering media using speckle variance optimization[J]. Optica, 6, 1381-1385(2019).
[50] Katz O, Small E, Guan Y F et al. Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers[J]. Optica, 1, 170-174(2014).
[51] Kong F T, Silverman R H, Liu L P et al. Photoacoustic-guided convergence of light through optically diffusive media[J]. Optics Letters, 36, 2053-2055(2011).
[52] Caravaca-Aguirre A M, Conkey D B, Dove J D et al. High contrast three-dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement[J]. Optics Express, 21, 26671-26676(2013).
[53] Lai P X, Wang L D, Tay J W et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J]. Nature Photonics, 9, 126-132(2015).
[54] Chaigne T, Katz O, Boccara A C et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix[J]. Nature Photonics, 8, 58-64(2014).
[55] Katz O, Ramaz F, Gigan S et al. Controlling light in complex media beyond the acoustic diffraction-limit using the acousto-optic transmission matrix[J]. Nature Communications, 10, 717(2019).
[56] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation[J]. Nature Photonics, 6, 657-661(2012).
[57] Xu X, Liu H L, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 5, 154-157(2011).
[58] Guan Y F, Katz O, Small E et al. Polarization control of multiply scattered light through random media by wavefront shaping[J]. Optics Letters, 37, 4663-4665(2012).
[59] Xiong W, Hsu C W, Bromberg Y et al. Complete polarization control in multimode fibers with polarization and mode coupling[J]. Light: Science & Applications, 7, 54(2018).
[60] Mosk A P, Lagendijk A, Lerosey G et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 6, 283-292(2012).
[61] Aulbach J, Gjonaj B, Johnson P M et al. Control of light transmission through opaque scattering media in space and time[J]. Physical Review Letters, 106, 103901(2011).
[62] Katz O, Small E, Bromberg Y et al. Focusing and compression of ultrashort pulses through scattering media[J]. Nature Photonics, 5, 372-377(2011).
[63] McCabe D J, Tajalli A, Austin D R et al. Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium[J]. Nature Communications, 2, 447(2011).
[64] Andreoli D, Volpe G, Popoff S et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix[J]. Scientific Reports, 5, 10347(2015).
[65] Mounaix M, Andreoli D, Defienne H et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix[J]. Physical Review Letters, 116, 253901(2016).
[66] Kim M, Choi Y, Yoon C et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels[J]. Nature Photonics, 6, 581-585(2012).
[67] Jeong S, Lee Y R, Choi W et al. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering[J]. Nature Photonics, 12, 277-283(2018).
[68] Cao J, Yang Q, Miao Y S et al. Enhance the delivery of light energy ultra-deep into turbid medium by controlling multiple scattering photons to travel in open channels[J]. Light: Science & Applications, 11, 108(2022).
[69] Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 5, 343-348(2011).
[70] Kozawa Y, Matsunaga D, Sato S. Superresolution imaging via superoscillation focusing of a radially polarized beam[J]. Optica, 5, 86-92(2018).
[71] Cheng W, Zhang W, Jing H et al. Orbital angular momentum for wireless communications[J]. IEEE Wireless Communications, 26, 100-107(2018).
[72] Li L T, Zheng Y L, Liu H G et al. Reconstitution of optical orbital angular momentum through strongly scattering media via feedback-based wavefront shaping method[J]. Chinese Optics Letters, 19, 100101(2021).
[73] Tzang O, Niv E, Singh S et al. Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform[J]. Nature Photonics, 13, 788-793(2019).
[74] Liu Y, Ma C, Shen Y C et al. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation[J]. Optica, 4, 280-288(2017).
[75] Blochet B, Bourdieu L, Gigan S. Focusing light through dynamical samples using fast continuous wavefront optimization[J]. Optics Letters, 42, 4994-4997(2017).
[76] Choi Y, Yang T D, Fang-Yen C et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium[J]. Physical Review Letters, 107, 023902(2011).
[77] Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 61, 2328-2331(1988).
[78] Cao R Z, de Goumoens F, Blochet B et al. High-resolution non-line-of-sight imaging employing active focusing[J]. Nature Photonics, 16, 462-468(2022).
[79] Turtaev S, Leite I T, Altwegg-Boussac T et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging[J]. Light: Science & Applications, 7, 92(2018).
[80] Stellinga D, Phillips D B, Mekhail S P et al. Time-of-flight 3D imaging through multimode optical fibers[J]. Science, 374, 1395-1399(2021).
[81] Tay S, Blanche P A, Voorakaranam R et al. An updatable holographic three-dimensional display[J]. Nature, 451, 694-698(2008).
[82] Benton S A, Bove V M, Jr[M]. Holographic imaging(2007).
[83] Liang J Y, Becker M F. Spatial bandwidth analysis of fast backward Fresnel diffraction for precise computer-generated hologram design[J]. Applied Optics, 53, G84-G94(2014).
[84] Yu H, Lee K R, Park J et al. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields[J]. Nature Photonics, 11, 186-192(2017).
[85] Yu P P, Liu Y F, Wang Z Q et al. Ultrahigh-density 3D holographic projection by scattering-assisted dynamic holography[J]. Optica, 10, 481-490(2023).
[86] Yang J M, Li L S, He Q Z et al. An ultrahigh-fidelity 3D holographic display using scattering to homogenize the angular spectrum[J]. Science Advances, 9, eadi9987(2023).
[87] Willner A E, Ren Y X, Xie G D et al. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing[J]. Philosophical Transactions Series A, 375, 20150439(2017).
[88] Willner A E, Huang H, Yan Y et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 7, 66-106(2015).
[89] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).
[90] Bozinovic N, Yue Y, Ren Y X et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 340, 1545-1548(2013).
[91] Zhu L, Wang A D, Chen S et al. Orbital angular momentum mode multiplexed transmission in heterogeneous few-mode and multi-mode fiber network[J]. Optics Letters, 43, 1894-1897(2018).
[92] Gong L, Zhao Q, Zhang H et al. Optical orbital-angular-momentum-multiplexed data transmission under high scattering[J]. Light: Science & Applications, 8, 27(2019).
[93] Liu Z W, Huang Y W, Liu H G et al. Non-line-of-sight optical communication based on orbital angular momentum[J]. Optics Letters, 46, 5112-5115(2021).
[94] Leindecker N, Marandi A, Byer R L et al. Broadband degenerate OPO for mid-infrared frequency comb generation[J]. Optics Express, 19, 6296-6302(2011).
[95] Wang C, Zhang M, Chen X et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 562, 101-104(2018).
[96] Li M X, Ling J W, He Y et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Communications, 11, 4123(2020).
[97] Xu M Y, He M B, Zhang H G et al. High-performance coherent optical modulators based on thin-film lithium niobate platform[J]. Nature Communications, 11, 3911(2020).
[98] He M B, Xu M Y, Ren Y X et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond[J]. Nature Photonics, 13, 359-364(2019).
[99] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2, 932-940(2005).
[100] Oheim M, Beaurepaire E, Chaigneau E et al. Two-photon microscopy in brain tissue: parameters influencing the imaging depth[J]. Journal of Neuroscience Methods, 111, 29-37(2001).
[101] Burns P N, Simpson D H, Averkiou M A. Nonlinear imaging[J]. Ultrasound in Medicine & Biology, 26, S19-S22(2000).
[102] Qiao Y Q, Peng Y J, Zheng Y L et al. Second-harmonic focusing by a nonlinear turbid medium via feedback-based wavefront shaping[J]. Optics Letters, 42, 1895-1898(2017).
[103] Moon J, Cho Y C, Kang S et al. Measuring the scattering tensor of a disordered nonlinear medium[J]. Nature Physics, 19, 1709-1718(2023).
[104] Ni F C, Liu H G, Zheng Y L et al. Nonlinear harmonic wave manipulation in nonlinear scattering medium via scattering-matrix method[J]. Advanced Photonics, 5, 046010(2023).
[105] Leedumrongwatthanakun S, Innocenti L, Defienne H et al. Programmable linear quantum networks with a multimode fibre[J]. Nature Photonics, 14, 139-142(2020).
[106] Defienne H, Barbieri M, Walmsley I A et al. Two-photon quantum walk in a multimode fiber[J]. Science Advances, 2, e1501054(2016).
[107] Peng Y J, Qiao Y Q, Xiang T et al. Manipulation of the spontaneous parametric down-conversion process in space and frequency domains via wavefront shaping[J]. Optics Letters, 43, 3985-3988(2018).
[108] Defienne H, Reichert M, Fleischer J W. Adaptive quantum optics with spatially entangled photon pairs[J]. Physical Review Letters, 121, 233601(2018).
[109] Valencia N H, Goel S, McCutcheon W et al. Unscrambling entanglement through a complex medium[J]. Nature Physics, 16, 1112-1116(2020).
[110] Lib O, Hasson G, Bromberg Y. Real-time shaping of entangled photons by classical control and feedback[J]. Science Advances, 6, eabb6298(2020).
[111] Huang Y W, Qi Z T, Yang Y L et al. Frequency-insensitive spatiotemporal shaping of single photon in multiuser quantum network[J]. NPJ Quantum Information, 9, 83(2023).
[112] Redding B, Cao H. Using a multimode fiber as a high-resolution, low-loss spectrometer[J]. Optics Letters, 37, 3384-3386(2012).
[113] Sun Y W, Ni F C, Huang Y W et al. Near-infrared speckle wavemeter based on nonlinear frequency conversion[J]. Optics Letters, 48, 4049-4052(2023).
[114] Facchin M, Bruce G D, Dholakia K. Speckle-based determination of the polarisation state of single and multiple laser beams[J]. OSA Continuum, 3, 1302-1313(2020).
[115] Fickler R, Ginoya M, Boyd R W. Custom-tailored spatial mode sorting by controlled random scattering[J]. Physical Review B, 95, 161108(2017).
[116] Redding B, Liew S F, Sarma R et al. Compact spectrometer based on a disordered photonic chip[J]. Nature Photonics, 7, 746-751(2013).
[117] Sarma R, Yamilov A G, Petrenko S et al. Control of energy density inside a disordered medium by coupling to open or closed channels[J]. Physical Review Letters, 117, 086803(2016).
[118] Bender N, Yamilov A, Goetschy A et al. Depth-targeted energy delivery deep inside scattering media[J]. Nature Physics, 18, 309-315(2022).
[119] Jang M, Horie Y, Shibukawa A et al. Wavefront shaping with disorder-engineered metasurfaces[J]. Nature Photonics, 12, 84-90(2018).
[121] Matthès M W, del Hougne P, de Rosny J et al. Optical complex media as universal reconfigurable linear operators[J]. Optica, 6, 465-472(2019).
[122] Rafayelyan M, Dong J, Tan Y Q et al. Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction[J]. Physical Review X, 10, 041037(2020).
Get Citation
Copy Citation Text
Fengchao Ni, Haigang Liu, Xianfeng Chen. Methods and Applications of Scattering Light Field Manipulation (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026006
Category: Physical Optics
Received: Nov. 29, 2023
Accepted: Dec. 29, 2023
Published Online: Apr. 23, 2024
The Author Email: Liu Haigang (liuhaigang@sjtu.edu.cn), Chen Xianfeng (xfchen@sjtu.edu.cn)
CSTR:32393.14.AOS231858