Chinese Journal of Quantum Electronics, Volume. 42, Issue 2, 177(2025)

Optimized design and error analysis of vibration sensitivity of horizontally placed cylindrical reference cavity

HAO Yanmei1,2,3, HUANG Yao1,2, ZHANG Baolin1,2, CHEN Qunfeng1,2、*, GUAN Hua1,2、**, and GAO Kelin1,2
Author Affiliations
  • 1Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
  • 2Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences, Wuhan 430071, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(25)

    [1] Gill P. Optical frequency standards[J]. Metrologia, 42, S125-S137(2005).

    [2] Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637701(2015).

    [3] Eisele C, Nevsky A Y, Schiller S. Laboratory test of the isotropy of light propagation at the 10-17 level[J]. Physical Review Letters, 103, 090401(2009).

    [4] Godun R M, Nisbet-Jones P B R, Jones J M et al. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants[J]. Physical Review Letters, 113, 210801(2014).

    [5] LIGO Scientific Collaboration. LIGO: The laser interferometer gravitational-wave observatory[J]. Reports on Progress in Physics, 72, 076901(2009).

    [6] LIGO scientific collaboration and VIRGO Collaboration. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).

    [7] Hanes G R, Baird K M, Deremigis J. Stability, reproducibility, and absolute wavelength of a 633-nm He-Ne laser stabilized to an iodine hyperfine component[J]. Applied Optics, 12, 1600-1605(1973).

    [8] Hall J L, Ma L S, Taubman M et al. Stabilization and frequency measurement of the I2-stabilized Nd : YAG laser[J]. IEEE Transactions on Instrumentation and Measurement, 48, 583-586(1999).

    [9] Drever R W P, Hall J L, Kowalski F V et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 31, 97-105(1983).

    [10] Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities[J]. Physical Review Letters, 93, 250602(2004).

    [11] Zhang J, Wu W, Shi X H et al. Design verification of large time constant thermal shields for optical reference cavities[J]. Review of Scientific Instruments, 87, 023104(2016).

    [12] Dai X J, Jiang Y Y, Hang C et al. Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations[J]. Optics Express, 23, 5134-5146(2015).

    [13] Sanjuan J, Gürlebeck N, Braxmaier C. Mathematical model of thermal shields for long-term stability optical resonators[J]. Optics Express, 23, 17892-17908(2015).

    [14] Chen L S, Hall J L, Ye J et al. Vibration-induced elastic deformation of Fabry-Perot cavities[J]. Physical Review A, 74, 053801(2006).

    [15] Millo J, Magalhães D V, Mandache C et al. Ultrastable lasers based on vibration insensitive cavities[J]. Physical Review A, 79, 053829(2009).

    [16] Nazarova T, Riehle F, Sterr U. Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser[J]. Applied Physics B, 83, 531-536(2006).

    [17] Webster S A, Oxborrow M, Gill P. Vibration insensitive optical cavity[J]. Physical Review A, 75, 011801(2007).

    [18] Ludlow A D, Huang X, Notcutt M et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10-15[J]. Optics Letters, 32, 641-643(2007).

    [19] Webster S, Gill P. Force-insensitive optical cavity[J]. Optics Letters, 36, 3572-3574(2011).

    [20] Xiao R, Xu Y Q, Wang Y et al. Transportable 30 cm optical cavity based ultrastable lasers with beating instability of 2 × 10-16[J]. Applied Physics B, 128, 220(2022).

    [21] Antonini P, Okhapkin M, Göklü E et al. Test of constancy of speed of light with rotating cryogenic optical resonators[J]. Physical Review A, 71, 050101(2005).

    [22] Robinson J M, Oelker E, Milner W R et al. Crystalline optical cavity at 4 K with thermal-noise-limited instability and ultralow drift[J]. Optica, 6, 240-243(2019).

    [23] Jin L. Development of Lasers with 10-16 Frequency Instability and Theoretical Exploration on 10-18 Laser Frequency Instability via Four-wave Mixing[D](2019).

    [24] Jiang C H. Research on Key Technologies of 698 nm Ultra-stable Laser Based on 30 cm Long Cavity[D](2019).

    [25] Sebastian H, Stephan F, Christian G et al. 8 × 10-17 fractional laser frequency instability with a long room-temperature cavity[J]. Optics Letters, 40, 2112-2115(2015).

    Tools

    Get Citation

    Copy Citation Text

    Yanmei HAO, Yao HUANG, Baolin ZHANG, Qunfeng CHEN, Hua GUAN, Kelin GAO. Optimized design and error analysis of vibration sensitivity of horizontally placed cylindrical reference cavity[J]. Chinese Journal of Quantum Electronics, 2025, 42(2): 177

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 1, 2023

    Accepted: --

    Published Online: Apr. 1, 2025

    The Author Email: Qunfeng CHEN (qfchen@wipm.ac.cn), Hua GUAN (guanhua@wipm.ac.cn)

    DOI:10.3969/j.issn.1007-5461.2025.02.003

    Topics