Acta Optica Sinica, Volume. 42, Issue 11, 1134009(2022)

Progress of Z-Pinch Dynamic Hohlraum Experiments on 8-MA Facility

Qiang Yi1、*, Fan Ye1, Shijian Meng1,2, Jian Lu1, Jianlun Yang1, Qingyuan Hu1, Hongsheng Guo1, Faxin Chen1, Zhanchang Huang1, Shuqing Jiang1, Jiamin Ning1, Xiaosong Yan1, Ruihua Yang1, Rongkun Xu1, Zeping Xu1, and Zhenghong Li1
Author Affiliations
  • 1Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
  • 2Institute of Modern Physics, Shanghai EBIT Laboratory, Fudan University, Shanghai 200433, China
  • show less
    References(67)

    [1] Moses E I. The national ignition facility and the national ignition campaign[J]. IEEE Transactions on Plasma Science, 38, 684-689(2010).

    [2] Lindl J, Landen O, Edwards J et al. Review of the national ignition campaign 2009-2012[J]. Physics of Plasmas, 21, 020501(2014).

    [3] Zylstra A B, Casey D T, Kritcher A et al. Hot-spot mix in large-scale HDC implosions at NIF[J]. Physics of Plasmas, 27, 092709(2020).

    [4] Hurricane O A, Callahan D A, Casey D T et al. Inertially confined fusion plasmas dominated by alpha-particle self-heating[J]. Nature Physics, 12, 800-806(2016).

    [5] Edwards M J, Patel P K, Lindl J D et al. Progress towards ignition on the national ignition facility[J]. Physics of Plasmas, 20, 070501(2013).

    [6] Hurricane O A, Callahan D A, Casey D T et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 506, 343-348(2014).

    [7] le Pape S, Hopkins L F B, Divol L et al. Fusion energy output greater than the kinetic energy of an imploding shell at the national ignition facility[J]. Physical Review Letters, 120, 245003(2018).

    [8] Casey D T, Thomas C A, Baker K L et al. The high velocity, high adiabat, “Bigfoot” campaign and tests of indirect-drive implosion scaling[J]. Physics of Plasmas, 25, 056308(2018).

    [9] Zylstra A B, Kritcher A L, Hurricane O A et al. Record energetics for an inertial fusion implosion at NIF[J]. Physical Review Letters, 126, 025001(2021).

    [10] Hohenberger M, Casey D T, Kritcher A L et al. Integrated performance of large HDC-capsule implosions on the National Ignition Facility[J]. Physics of Plasmas, 27, 112704(2020).

    [11] Kritcher A L, Casey D T, Thomas C A et al. Symmetric fielding of the largest diamond capsule implosions on the NIF[J]. Physics of Plasmas, 27, 052710(2020).

    [12] Robey H F, Berzak Hopkins L, Milovich J L et al. The I-Raum: a new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility[J]. Physics of Plasmas, 25, 012711(2018).

    [13] Kritcher A L, Zylstra A B, Callahan D A et al. Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E[J]. Physics of Plasmas, 28, 072706(2021).

    [14] Leeper R J, Ruiz C L, Chandler G A et al. ZR neutron diagnostic suite[J]. Journal of Physics: Conference Series, 112, 032076(2008).

    [15] Rochau G A, Bailey J E, Chandler G A et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 49, B591-B600(2007).

    [16] Slutz S A, Bailey J E, Chandler G A et al. Dynamic hohlraum driven inertial fusion capsules[J]. Physics of Plasmas, 10, 1875-1882(2003).

    [17] Smirnov V P. Fast liners for inertial fusion[J]. Plasma Physics and Controlled Fusion, 33, 1697-1714(1991).

    [18] Brownell J H, Bowers R L. McLenithan K D, et al. Radiation environments produced by plasma Z-pinch stagnation on central targets[J]. Physics of Plasmas, 5, 2071-2080(1998).

    [19] Slutz S A, Herrmann M C, Vesey R A et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 17, 056303(2010).

    [20] Cuneo M E, Herrmann M C, Sinars D B et al. Magnetically driven implosions for inertial confinement fusion at Sandia national laboratories[J]. IEEE Transactions on Plasma Science, 40, 3222-3245(2012).

    [21] Slutz S A, Vesey R A. High-gain magnetized inertial fusion[J]. Physical Review Letters, 108, 025003(2012).

    [22] Bailey J E, Chandler G A, Slutz S A et al. Hot dense capsule-implosion cores produced by Z-pinch dynamic Hohlraum radiation[J]. Physical Review Letters, 92, 085002(2004).

    [23] Sanford T W L, Lemke R W, Mock R C et al. Dynamics and characteristics of a 215-eV dynamic-hohlraum X-ray source on Z[J]. Physics of Plasmas, 9, 3573-3594(2002).

    [24] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 2, 3933-4024(1995).

    [25] Bailey J E, Chandler G A, Mancini R C et al. Dynamic hohlraum radiation hydrodynamics[J]. Physics of Plasmas, 13, 056301(2006).

    [26] Ruiz C L, Cooper G W, Slutz S A et al. Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums[J]. Physical Review Letters, 93, 015001(2004).

    [27] Sinars D B, Sweeney M A, Alexander C S et al. Review of pulsed power-driven high energy density physics research on Z at Sandia[J]. Physics of Plasmas, 27, 070501(2020).

    [28] Gomez M R, Slutz S A, Sefkow A B et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Physical Review Letters, 113, 155003(2014).

    [29] Gomez M R, Slutz S A, Jennings C A et al. Performance scaling in magnetized liner inertial fusion experiments[J]. Physical Review Letters, 125, 155002(2020).

    [30] Goncharov V N, Sangster T C, Radha P B et al. Performance of direct-drive cryogenic targets on OMEGA[J]. Physics of Plasmas, 15, 056310(2008).

    [31] McKenty P W, Sangster T C, Alexander M et al. Direct-drive cryogenic target implosion performance on OMEGA[J]. Physics of Plasmas, 11, 2790-2797(2004).

    [32] Rovang D C, Lamppa D C, Cuneo M E et al. Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia’s Z facility[J]. The Review of Scientific Instruments, 85, 124701(2014).

    [33] Slutz S A, Jennings C A, Awe T J et al. Auto-magnetizing liners for magnetized inertial fusion[J]. Physics of Plasmas, 24, 012704(2017).

    [34] Shipley G A, Awe T J, Hutsel B T et al. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns[J]. Physics of Plasmas, 25, 052703(2018).

    [35] Yager-Elorriaga D A, Gomez M R, Ruiz D E et al. An overview of magneto-inertial fusion on the Z machine at Sandia National Laboratories[J]. Nuclear Fusion, 62, 042015(2022).

    [36] Xiao D L, Ding N, Wang G Q et al. Review of Z-pinch driven fusion and high energy density physics applications[J]. High Power Laser and Particle Beams, 32, 092005(2020).

    [37] Huang X B, Xu Q, Wang K L et al. Progress on high energy density physics experiments with pinch devices[J]. High Power Laser and Particle Beams, 33, 012002(2021).

    [38] Meng S J, Hu Q Y, Ning J M et al. Measurement of axial radiation properties in Z-pinch dynamic hohlraum at Julong-1[J]. Physics of Plasmas, 24, 014505(2017).

    [39] Ye F, Xiao D L, Qin Y et al. Investigation on the main characteristics of dynamic hohlraum formation at the Julong-1 facility[J]. Physics of Plasmas, 27, 093301(2020).

    [40] Yi Q, Guo H S, Hu Q Y et al. On the bremsstrahlung background of the neutron yield diagnostic in deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums on an 8-MA pulsed power facility[J]. Physics of Plasmas, 27, 102709(2020).

    [41] Yi Q, Meng S J, Yang J L et al. Estimates of upper limit of neutron yield in experiments with Z-pinch dynamic hohlraums at 8-MA pulsed power facility[J]. Physics of Plasmas, 28, 082706(2021).

    [42] Xiao D L, Ye F, Meng S J et al. Preliminary investigation on the radiation transfer in dynamic hohlraums on the PTS facility[J]. Physics of Plasmas, 24, 092701(2017).

    [43] Huang X B, Ren X D, Dan J K et al. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility[J]. Physics of Plasmas, 24, 092704(2017).

    [44] Sanford T W L, Cuneo M E, Bliss D E et al. Demonstrated transparent mode in nested wire arrays used for dynamic hohlraum Z pinches[J]. Physics of Plasmas, 14, 052703(2007).

    [45] Nash T J, Derzon M S, Allshouse G et al. Dynamic hohlraum experiments on SATURN[C]. AIP Conference Proceedings, 409, 175-182(1997).

    [46] Derzon M S, Allshouse G O, Deeney C et al[R]. Experimental results and modeling of a dynamic hohlraum on SATURN Albuquerque: Sandia National Lab, 1998.

    [47] Callahan D A, Hurricane O A, Kritcher A L et al. A simple model to scope out parameter space for indirect drive designs on NIF[J]. Physics of Plasmas, 27, 072704(2020).

    [48] MacLaren S A, Masse L P, Czajka C E et al. A near one-dimensional indirectly driven implosion at convergence ratio 30[J]. Physics of Plasmas, 25, 056311(2018).

    [49] Hu S X, Goncharov V N, Radha P B et al. Two-dimensional simulations of the neutron yield in cryogenic deuterium-tritium implosions on OMEGA[J]. Physics of Plasmas, 17, 102706(2010).

    [50] Slutz S A, Peterson K J, Vesey R A et al. Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions[J]. Physics of Plasmas, 13, 102701(2006).

    [51] Rochau G A, Derzon M S, Fehl D et al. Modeling a one-dimensional bremsstrahlung and neutron imaging array for use on Sandia’s Z machine[J]. Review of Scientific Instruments, 70, 549-552(1999).

    [52] Si F N, Yang J L, Xu R K et al. A Pb-TLD spectrometer to measure high energy photons in Z-pinch experiments on the primary test stand[J]. Fusion Engineering and Design, 118, 1-4(2017).

    [53] Knoll G F. Radiation detection and measurement[M]. New Jersey: John Wiley & Sons(2010).

    [54] Law J J. Isomeric activation of silver with bremsstrahlung[J]. Journal of Nuclear Science and Technology, 8, 351-353(1971).

    [55] Yoshida E, Kobayashi T, Kojima Y et al. Half-lives of isomeric levels of 107mAg, 109mAg and 103mRh photoactivated by 60Co γ-ray irradiation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 449, 217-220(2000).

    [56] Stoeckl C, Cruz M, Glebov V Y et al. 81(10): 10D302[J]. down-scattered neutron measurements. The Review of Scientific Instruments(2010).

    [57] Ruskov E, Glebov V Y, Darling T W et al. Gated liquid scintillator detector for neutron time of flight measurements in a gas-puff Z-pinch experiment[J]. The Review of Scientific Instruments, 90, 073505(2019).

    [58] Lauck R, Brandis M, Bromberger B et al. Low-afterglow, high-refractive-index liquid scintillators for fast-neutron spectrometry and imaging applications[J]. IEEE Transactions on Nuclear Science, 56, 989-993(2009).

    [59] Gong J W, Chen B. Core devices and coupling modes of indirect X-ray detectors[J]. Laser & Optoelectronics Progress, 59, 0700003(2022).

    [60] Apruzese J P, Davis J, Whitney K G et al. The physics of radiation transport in dense plasmas[J]. Physics of Plasmas, 9, 2411-2419(2002).

    [61] Bennett G R, Sinars D B, Wenger D F et al. 77(10): 10E322[J]. high-spatial-resolution, 6.151 keV X-ray imaging of inertial confinement fusion capsule implosion, complex hydrodynamics experiments on Sandia’s Z accelerator, invited, . Review of Scientific Instruments(2006).

    [62] Nash T, Derzon M, Leeper R et al. Spatially and temporally resolved crystal spectrometer for diagnosing high-temperature pinch plasmas on Z[J]. Review of Scientific Instruments, 70, 302-304(1999).

    [63] Harding E C, Ao T, Bailey J E et al. Analysis and implementation of a space resolving spherical crystal spectrometer for X-ray Thomson scattering experiments[J]. The Review of Scientific Instruments, 86, 043504(2015).

    [64] Zhou W M, Yu M H, Zhang T K et al. High-resolution X-ray backlight radiography using picosecond petawatt laser[J]. Chinese Journal of Lasers, 47, 0500010(2020).

    [65] Ao T, Harding E C, Bailey J E et al. Relative X-ray collection efficiency, spatial resolution, and spectral resolution of spherically-bent quartz, mica, germanium, and pyrolytic graphite crystals[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 144, 92-107(2014).

    [66] Wang Z S, Huang Q S, Zhang Z et al. Extreme ultraviolet, X-ray and neutron thin film optical components and systems[J]. Acta Optica Sinica, 41, 0131001(2021).

    [67] del Río M S, Dejus R J. XOP 2.1: a new version of the X-ray optics software toolkit[C]. AIP Conference Proceedings, 705, 784-787(2004).

    Tools

    Get Citation

    Copy Citation Text

    Qiang Yi, Fan Ye, Shijian Meng, Jian Lu, Jianlun Yang, Qingyuan Hu, Hongsheng Guo, Faxin Chen, Zhanchang Huang, Shuqing Jiang, Jiamin Ning, Xiaosong Yan, Ruihua Yang, Rongkun Xu, Zeping Xu, Zhenghong Li. Progress of Z-Pinch Dynamic Hohlraum Experiments on 8-MA Facility[J]. Acta Optica Sinica, 2022, 42(11): 1134009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: X-Ray Optics

    Received: Jan. 25, 2022

    Accepted: Feb. 28, 2022

    Published Online: Jun. 3, 2022

    The Author Email: Yi Qiang (yiqiang@caep.cn)

    DOI:10.3788/AOS202242.1134009

    Topics