Optics and Precision Engineering, Volume. 33, Issue 11, 1803(2025)

Deep-sea pollutant detection for autonomous underwater robots

Biao ZHANG*, Zhenyang ZHU, and Jiazhong XU
Author Affiliations
  • Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, Harbin University of Science and Technology, Harbin150080, China
  • show less
    Figures & Tables(20)
    YOLOv8 model
    Predicted values of grid cells for bounding boxes and categories
    Comparison of feature fusion networks
    Structure of adown module
    Structure of efficient head
    Structure of diversified branching block
    Calculation factor for bounding box regression
    Selected images from Debris dataset
    Structure of underwater image restoration algorithm
    Restoration result of underwater image by different algorithms
    Training results for 300 epochs
    Confusion matrix for Debris-yolo model
    Feature images of Debris-yolo model
    Visualisation of detection results from different model sections
    • Table 1. Results of ablation experiments

      View table
      View in Article

      Table 1. Results of ablation experiments

      ModelABCPRmAP0.5mAP0.5∶0.95ParameterGFLOPS
      0---88.675.283.862.93.158.20
      1--9076.285.063.21.836.90
      2--88.375.984.763.83.668.10
      3--88.278.084.964.02.888.20
      4-88.376.984.663.11.635.60
      5-87.977.384.862.91.836.90
      6-88.977.684.964.53.668.10
      789.078.285.164.51.635.60
    • Table 2. Comparison of application data preprocessing effects

      View table
      View in Article

      Table 2. Comparison of application data preprocessing effects

      ModelPRmAP0.5mAP0.5∶0.95
      086.272.280.761.7
      189.078.285.166.4
    • Table 3. Comparison of detection results of different models

      View table
      View in Article

      Table 3. Comparison of detection results of different models

      ModelPRmAP0.5mAP0.5:0.95
      ResNet50-Faster R-CNN82.572.378.958.2
      YOLOv5s88.276.883.560.9
      DSDebrisNet88.377.083.961.4
      YOLOv8n88.675.283.862.9
      YOLOv10n87.777.183.663.8
      Debris-yolo89.078.285.164.5
    • Table 4. Comparison of results of different models for each category of detection

      View table
      View in Article

      Table 4. Comparison of results of different models for each category of detection

      ModalRovEelFishFabricFishing_net_RopeGlassMetalNatural_debrisPlasticRubber
      ResNet50-Faster R-CNN71.684.685.794.273.693.680.779.972.591.5
      YOLOv5s75.586.586.293.672.292.181.581.672.393.2
      DSDebrisNet74.785.586.493.471.893.883.579.973.396.7
      YOLOv8n74.684.487.694.672.595.180.781.673.393.7
      YOLOv10n70.790.287.893.972.694.482.081.074.089.8
      Debris-yolo78.387.688.396.073.792.483.982.176.591.8
    • Table 5. Comparison of different model lightweight metrics

      View table
      View in Article

      Table 5. Comparison of different model lightweight metrics

      ModelDetection speed/(frame·s-1Parameters/MBGFLOPSSize/MB
      Faster R-CNN19.1141.39208.00478
      YOLOv5s102.046.7115.8014.5
      DSDebrisNet95.246.7115.8013.8
      YOLOv8n88.493.158.706.00
      YOLOv10n98.452.3066.705.50
      Debris-yolo90.911.635.604.33
    • Table 6. Detection speed and inspection time in different situations

      View table
      View in Article

      Table 6. Detection speed and inspection time in different situations

      ModelScene 1Scene 2Scene 3
      FPSt/msFPSt/msFPSt/ms
      Faster R-CNN39.625.2743.123.2042.923.31
      YOLOv5s193.65.17208.54.80191.35.23
      DSDebrisNet187.35.34201.34.97186.25.37
      YOLOv8n181.95.49209.94.76191.65.20
      YOLOv10n176.85.08208.14.80195.75.11
      Debris-yolo185.75.38210.24.76194.05.16
    Tools

    Get Citation

    Copy Citation Text

    Biao ZHANG, Zhenyang ZHU, Jiazhong XU. Deep-sea pollutant detection for autonomous underwater robots[J]. Optics and Precision Engineering, 2025, 33(11): 1803

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 18, 2025

    Accepted: --

    Published Online: Aug. 14, 2025

    The Author Email: Biao ZHANG (zhangbiao@hrbust.edu.cn)

    DOI:10.37188/OPE.20253311.1803

    Topics