Acta Optica Sinica, Volume. 44, Issue 4, 0416002(2024)
Multiphase Controllable Growth and Second Harmonic Enhancement of Two-Dimensional Semiconductor WSe2
[1] Duan X D, Wang C, Pan A L et al. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges[J]. Chemical Society Reviews, 44, 8859-8876(2015).
[2] Fiori G, Bonaccorso F, Iannaccone G et al. Electronics based on two-dimensional materials[J]. Nature Nanotechnology, 9, 768-779(2014).
[3] Mak K F, Lee C G, Hone J et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 105, 136805(2010).
[4] Wen X L, Gong Z B, Li D H. Nonlinear optics of two-dimensional transition metal dichalcogenides[J]. InfoMat, 1, 317-337(2019).
[5] Zhang J T, Zhao W N, Yu P et al. Second harmonic generation in 2D layered materials[J]. 2D Materials, 7, 042002(2020).
[6] Guo Y W, Li Y, Ma Z W. Research on symmetry of BaTiO3 film based on second-harmonic generation technology[J]. Acta Optica Sinica, 41, 0619001(2021).
[7] Chhowalla M, Shin H S, Eda G et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 5, 263-275(2013).
[8] Zhang P R, Liu H, Hu J X et al. Synthesis of monolayer MoS2(1-x)Se2xalloy and photoelectric properties of MoS2(1-x)Se2x(x=0.25) field-effect transistor[J]. Acta Optica Sinica, 42, 1616001(2022).
[9] Wang G, Marie X, Gerber I et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances[J]. Physical Review Letters, 114, 097403(2015).
[10] Yin X B, Ye Z L, Chenet D A et al. Edge nonlinear optics on a MoS2 atomic monolayer[J]. Science, 344, 488-490(2014).
[11] Shi J, Yu P, Liu F C et al. 3R MoS2 with broken inversion symmetry: a promising ultrathin nonlinear optical device[J]. Advanced Materials, 29, 1701486(2017).
[12] An L H, Cai X B, Pei D et al. Interaction effects and superconductivity signatures in twisted double-bilayer WSe2[J]. Nanoscale Horizons, 5, 1309-1316(2020).
[13] Cao Y, Fatemi V, Fang S A et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 556, 43-50(2018).
[14] Shearer M J, Samad L, Zhang Y et al. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations[J]. Journal of the American Chemical Society, 139, 3496-3504(2017).
[15] Zhang L M, Liu K H, Wong A B et al. Three-dimensional spirals of atomic layered MoS2[J]. Nano Letters, 14, 6418-6423(2014).
[16] Chen L A, Liu B L, Abbas A N et al. Screw-dislocation-driven growth of two-dimensional few-layer and pyramid-like WSe2 by sulfur-assisted chemical vapor deposition[J]. ACS Nano, 8, 11543-11551(2014).
[17] Zhao Y Z, Zhang C Y, Kohler D D et al. Supertwisted spirals of layered materials enabled by growth on non-Euclidean surfaces[J]. Science, 370, 442-445(2020).
[18] Wang X Z, Shang Q Y, Zhang F et al. Water-assisted growth of twisted 3R-stacked MoSe2 spirals and its dramatically enhanced second harmonic generations[J]. Small, 19, 2301828(2023).
[19] Fan X P, Zhao Y Z, Zheng W H et al. Controllable growth and formation mechanisms of dislocated WS2 spirals[J]. Nano Letters, 18, 3885-3892(2018).
[20] Meng F, Morin S A, Forticaux A et al. Screw dislocation driven growth of nanomaterials[J]. Accounts of Chemical Research, 46, 1616-1626(2013).
[21] Terrones H, Del Corro E, Feng S et al. New first order raman-active modes in few layered transition metal dichalcogenides[J]. Scientific Reports, 4, 4215(2014).
[22] Lee D M, Song J W, Lee Y J et al. Control of circularly polarized electroluminescence in induced twist structure of conjugate polymer[J]. Advanced Materials, 29, 1700907(2017).
[23] Zeng H L, Liu G B, Dai J F et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides[J]. Scientific Reports, 3, 1608(2013).
[24] McCreary K M, Phillips M, Chuang H J et al. Stacking-dependent optical properties in bilayer WSe2[J]. Nanoscale, 14, 147-156(2022).
[25] Li Z J, Förste J, Watanabe K et al. Stacking-dependent exciton multiplicity in WSe2 bilayers[J]. Physical Review B, 106, 045411(2022).
[26] Molina-Sánchez A, Sangalli D, Hummer K et al. Effect of spin-orbit interaction on the optical spectra of single-layer, double-layer, and bulk MoS2[J]. Physical Review B, 88, 045412(2013).
[27] Morin S A, Forticaux A, Bierman M J et al. Screw dislocation-driven growth of two-dimensional nanoplates[J]. Nano letters, 11, 4449-4455(2011).
[28] Zeng Z, Sun X X, Zhang D L et al. Controlled vapor growth and nonlinear optical applications of large-area 3R phase WS2 and WSe2 atomic layers[J]. Advanced Functional Materials, 29, 1806874(2019).
[29] Kapfer M, Jessen B S, Eisele M E et al. Programming twist angle and strain profiles in 2D materials[J]. Science, 381, 677-681(2023).
[30] Xie X, Ding J N, Wu B et al. Pressure-induced dynamic tuning of interlayer coupling in twisted WSe2/WSe2 homobilayers[J]. Nano Letters, 23, 8833-8841(2023).
[31] Chen S, Gao J F, Srinivasan B M et al. Origin of ultrafast growth of monolayer WSe2 via chemical vapor deposition[J]. NPJ Computational Materials, 5, 28(2019).
[32] Liang J, Zhang J, Li Z Z et al. Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation[J]. Nano Letters, 17, 7539-7543(2017).
Get Citation
Copy Citation Text
Guang Wang, Bowen Yao, Lü Zhiquan. Multiphase Controllable Growth and Second Harmonic Enhancement of Two-Dimensional Semiconductor WSe2[J]. Acta Optica Sinica, 2024, 44(4): 0416002
Category: Materials
Received: Oct. 8, 2023
Accepted: Nov. 30, 2023
Published Online: Feb. 21, 2024
The Author Email: Guang Wang (wangguang@nudt.edu.cn)
CSTR:32393.14.AOS231624