Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 1, 78(2021)
Visualization of near-infrared light and applications
[1] [1] KLLHAMMER J E. The road ahead for car night-vision [J]. Nature Photonics, 2006, sample: 12-13.
[2] [2] WELSHER K, LIU Z, SHERLOCK S P, et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice [J]. Nature Nanotechnology, 2009, 4(11): 773-780.
[3] [3] GAO X H, CUI Y Y, LEVENSON R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nature Biotechnology, 2004, 22(8): 969-976.
[4] [4] YANG D Z, ZHOU X K, MA D G, et al. Near infrared to visible light organic up-conversion devices with photon-to-photon conversion efficiency approaching 30% [J]. Materials Horizons, 2018, 5(5): 874-882.
[5] [5] LIU S W, LEE C C, YUAN C H, et al. Transparent organic upconversion devices for near-infrared sensing [J]. Advanced Materials, 2015, 27(7): 1217-1222.
[6] [6] YUAN C H, LEE C C, LIU C F, et al. Cathodic-controlled and near-infrared organic upconverter for local blood vessels mapping [J]. Scientific Reports, 2016, 6: 32324.
[7] [7] DING H, LU L H, SHI Z, et al. Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources [J] Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): 6632-6637.
[8] [8] LU J S, ZHENG Y, CHEN Z J, et al. Optical upconversion devices based on photosensitizer-doped organic light-emitting diodes [J]. Applied Physics Letters, 2007, 91(20): 201107.
[9] [9] LI N, LAN Z J, LAU Y S, et al. SWIR photodetection and visualization realized by incorporating an organic SWIR sensitive bulk heterojunction [J]. Advanced Science, 2020, 7(14): 2000444.
[10] [10] ALLARD L B, LIU H C, BUCHANAN M, et al. Pixelless infrared imaging utilizing a p-type quantum well infrared photodetector integrated with a light emitting diode [J]. Applied Physics Letters, 1997, 70(21): 2784-2786.
[11] [11] BOUCHERIF A, BAN D, LUO H, et al. InAsSb based mid-infrared optical upconversion devices operable at thermoelectric temperatures [J]. Electronics Letters, 2008, 44(4): 312-313.
[12] [12] CHEN J, TAO J C, BAN D Y, et al. Hybrid organic/inorganic optical up-converter for pixel-less near-infrared imaging [J]. Advanced Materials, 2012, 24(23): 3138-3142.
[13] [13] JIANG J T, TSAO S, O’SULLIVAN T, et al. Fabrication of indium bumps for hybrid infrared focal plane array applications [J]. Infrared Physics & Technology, 2004, 45(2): 143-151.
[14] [14] KRUSE P W, PRIBBLE F C, SCHULZE R G. Solid-state infrared-wavelength converter employing high-quantum-efficiency Ge-GaAs heterojunction [J].Journal of Applied Physics, 1967, 38(4): 1718-1720.
[15] [15] LIU H C, GAO M, POOLE P J. 1.5 μm up-conversion device [J].Electronics Letters, 2000, 36(15): 1300-1301.
[16] [16] LIU H C, ALLARD L B, BUCHANAN M, et al. Pixelless infrared imaging device [J]. Electronics Letters, 1997, 33(5): 379-380.
[17] [17] LIU H C, LI J M, WASILEWSKI Z R, et al. Integrated quantum well intersubband photodetector and light-emitting diode for thermal imaging [C]//Proceedings of SPIE 2552, Infrared Technology ⅩⅪ. San Diego, CA: APIE, 1995: 2552.
[18] [18] LUO H, BAN D, LIU H C, et al. Optical upconverter with integrated heterojunction phototransistor and light-emitting diode [J]. Applied Physics Letters, 2006, 88(7): 073501.
[19] [19] CHU X B, GUAN M, LI L S, et al. Improved efficiency of organic/inorganic hybrid near-infrared light upconverter by device optimization [J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4976-4980.
[20] [20] CHEN J, BAN D Y, HELANDER M G, et al. Near infrared optical upconverter based on i-In0.53Ga0.47As/C60 photovoltaic junction [J]. Electranics Letters, 2009, 45(14): 753-755.
[21] [21] CHEN J, BAN D Y, HELANDER M G, et al. Near-infrared inorganic/organic optical upconverter with an external power efficiency of >100% [J]. Advanced Materials, 2010, 22(43): 4900-4904.
[22] [22] NI J P, TANO T, ICHINO Y, et al. Organic light-emitting diode with TiOPc layer—a new multifunctional optoelectronic device [J]. Japanese Journal of Applied Physics, 2001, 40(9A): L948-L951.
[23] [23] KIM D Y, SONG D W, CHOPRA N, et al. Organic infrared upconversion device [J]. Advanced Materials, 2010, 22(20): 2260-2263.
[24] [24] SONG Q G, LIN T, SU Z S, et al. Organic upconversion display with an over 100% photon-to-photon upconversion efficiency and a simple pixelless device structure [J]. The Journal of Physical Chemistry Letters, 2018, 9(23): 6818-6824.
[25] [25] KIM D Y, CHOUDHURY K R, LEE J W, et al. PbSe nanocrystal-based infrared-to-visible up-conversion device [J]. Nano Letters, 2011, 11(5): 2109-2113.
[26] [26] YU H, KIM D, LEE J, et al. High-gain infrared-to-visible upconversion light-emitting phototransistors [J]. Nature Photonics, 2016, 10(2): 129-134.
[27] [27] ZHOU W J, SHANG Y Q, GARCA DE ARQUER F P, et al. Solution-processed upconversion photodetectors based on quantum dots [J]. Nature Electronics, 2020, 3(5): 251-258.
[28] [28] YEDDU V, SEO G, CRUCIANI F, et al. Low-band-gap polymer-based infrared-to-visible upconversion organic light-emitting diodes with infrared sensitivity up to 1.1 μm [J]. ACS Photonics, 2019, 6(10): 2368-2374.
[29] [29] YU H, CHENG Y H, LI M L, et al. Sub-band gap turn-on near-infrared-to-visible up-conversion device enabled by an organic-inorganic hybrid perovskite photovoltaic absorber [J]. ACS Applied Materials & Interfaces, 2018, 10(18): 15920-15925.
[30] [30] TACHIBANA H, AIZAWA N, HIDAKA Y, et al. Tunable full-color electroluminescence from all-organic optical upconversion devices by near-infrared sensing [J]. ACS Photonics, 2017, 4(2): 223-227.
[31] [31] KIM D Y, LAI T H, LEE J W, et al. Multi-spectral imaging with infrared sensitive organic light emitting diode [J]. Scientific Reports, 2014, 4: 5946.
[32] [32] DUPONT E, LIU H C, BUCHANAN M, et al. Pixel-less infrared imaging based on the integration of an n-type quantum-well infrared photodetector with a light-emitting diode [J]. Applied Physics Letters, 1999, 75(4): 563-565.
[33] [33] SANDHU J S, HEBERLE A P, ALPHENAAR B W, et al. Near-infrared to visible up-conversion in a forward-biased Schottky diode with a p-doped channel [J]. Applied Physics Letters, 1999, 76(12): 1507-1509.
[34] [34] LUO H, BAN D, LIU H C, et al. Pixelless imaging device using optical up-converter [J]. IEEE Electron Device Letters, 2004, 25(3): 129-131.
[35] [35] LUO H, BAN D, LIU H C, et al. 1.5 μm to 0.87 μm optical upconversion using wafer fusion technology [J]. Journal of Vacuum Science & Technology A, 2004, 22(3): 788-791.
[36] [36] BAN D, LUO H, LIU H C, et al. Pixelless 1.5-μm up-conversion imaging device fabricated by wafer fusion [J]. IEEE Photonics Technology Letters, 2005, 17(7): 1477-1479.
[37] [37] YANG Y, SHEN W Z, LIU H C, et al. Near-infrared photon upconversion devices based on GaNAsSb active layer lattice matched to GaAs [J]. Applied Physics Letters, 2009, 94(9): 093504.
[38] [38] BAN D, HAN S, LU Z H, et al. Near-infrared to visible light optical upconversion by direct tandem integration of organic light-emitting diode and inorganic photodetector [J]. Applied Physics Letters, 2007, 90(9): 093108.
[39] [39] CHEN J, BAN D Y, FENG X D, et al. Enhanced efficiency in near-infrared inorganic/organic hybrid optical upconverter with an embedded mirror [J]. Journal of Applied Physics, 2008, 103(10): 103112.
[40] [40] CHEN J, BAN D Y, HELANDER M G, et al. Near-IR optical upconverter with integrated heterojunction phototransistor and organic light-emitting diode [J]. IEEE Photonics Technology Letters, 2009, 21(19): 1447-1449.
[41] [41] GUAN M, LI L S, CAO G H, et al. Organic light-emitting diodes with integrated inorganic photo detector for near-infrared optical up-conversion [J]. Organic Electronics, 2011, 12(12): 2090-2094.
[42] [42] CHU X B, GUAN M, ZHANG Y, et al. Influences of organic-inorganic interfacial properties on the performance of a hybrid near-infrared optical upconverter [J]. RSC Advances, 2013, 3(45): 23503-23507.
[43] [43] CHU X B, GUAN M, NIU L T, et al. Fast responsive and highly efficient optical upconverter based on phosphorescent OLED [J]. ACS Applied Materials & Interfaces, 2014, 6(21): 19011-19016.
[44] [44] HIRAMOTO M, YOSHIMURA K, MIYAO T, et al. Up-conversion of red light to green by a new type of light transducer using organic electroluminescent diode combined with photoresponsive amorphous silicon carbide [J]. Applied Physics Letters, 1991, 58(11): 1146-1148.
[45] [45] KATSUME T, HIRAMOTO M, YOKOYAMA M. High photon conversion in a light transducer combining organic electroluminescent diode with photoresponsive organic pigment film [J].Applied Physics Letters, 1944, 64(19): 2546-2548.
[46] [46] KATSUME T, HIRAMOTO M, YOKOYAMA M. Light amplification device using organic electroluminescent diode coupled with photoresponsive organic pigment film [J].Applied Physics Letters, 1995, 66(22): 2992-2994.
[47] [47] CHIKAMATSU M, ICHINO Y, TAKADA A, et al. Light up-conversion from near-infrared to blue using a photoresponsive organic light-emitting device [J]. Applied Physics Letters, 2002, 81(4): 769-771.
[48] [48] YANG C J, CHO T Y, LIN C L, et al. Organic light-emitting devices integrated with solar cells: High contrast and energy recycling [J]. Applied Physics Letters, 2007, 90(17): 173507.
[49] [49] OKAWA Y, NAKA S, OKADA H. Enhancement of electron injection in organic light-emitting diodes with photosensitive charge generation layer [J]. Japanese Journal of Applied Physics, 2011, 50(1S2): 01BC11.
[50] [50] CHIU T L, CHANG W F, WU C C, et al. Tandem organic light-emitting diode and organic photovoltaic device inside polymer dispersed liquid crystal cell [J]. Journal of Display Technology, 2013, 9(10): 787-793.
[51] [51] LIU S W, LI Y Z, LIN S Y, et al. Inducing the trap-site in an emitting-layer for an organic upconversion device exhibiting high current-gain ratio and low turn-on voltage [J]. Organic Electronics, 2016, 30: 275-280.
[52] [52] LV W L, ZHONG J K, PENG Y Q, et al. Organic near-infrared upconversion devices: Design principles and operation mechanisms [J]. Organic Electronics, 2016, 31: 258-265.
[53] [53] LI Y Z, SHIH C J, CHEN E H, et al. High current gain organic upconversion device using sublimated chloroaluminum phthalocyanine as a charge generation layer [C]//Proceedings of the 2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices. Kyoto: IEEE, 2016: 115-116.
[54] [54] MELQUADES M C, ADERNE R, CUIN A, et al. Investigation of Tin(Ⅱ)2,3-naphtalocyanine molecule used as near-infrared sensitive layer in organic up-conversion devices [J]. Optical Materials, 2017, 69: 54-60.
[55] [55] LI D W, HU Y S, ZHANG N, et al. Near-infrared to visible organic upconversion devices based on organic light-emitting field effect transistors [J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36103-36110.
[56] [56] STRASSEL K, KAISER A, JENATSCH S, et al. Squaraine dye for a visibly transparent all-organic optical upconversion device with sensitivity at 1 000 nm [J]. ACS Applied Materials & Interfaces, 2018, 10(13): 11063-11069.
[57] [57] LIU S W, BIRING S, LI Y Z, et al. Near-infrared organic upconversion device with high image sensing quality [J]. SID Symposium Digest of Technical Paper, 2018, 49(1): 1147-1150.
[58] [58] HE S J, WANG D K, YANG Z X, et al. Integrated tandem device with photoactive layer for near-infrared to visible upconversion imaging [J]. Applied Physics Letters, 2018, 112(24): 243301.
[59] [59] ADERNE R, STRASSEL K, JENATSCH S, et al. Near-infrared absorbing cyanine dyes for all-organic optical upconversion devices [J]. Organic Electronics, 2019, 74: 96-102.
[60] [60] ZHAO Y Q, YANG S Y, ZHAO J S, et al. PbS quantum dots based organic-inorganic hybrid infrared detecting and display devices [J]. Materials Letters, 2017, 196: 176-178.
[61] [61] LI N, LAU Y S, XIAO Z, et al. NIR to visible light upconversion devices comprising an NIR charge generation layer and a perovskite emitter [J]. Advanced Optical Materials, 2018, 6(24): 1801084.
[62] [62] ZHANG N, TANG H D, SHI K M, et al. High-performance all-solution-processed quantum dot near-infrared-to-visible upconversion devices for harvesting photogenerated electrons [J]. Applied Physics Letters, 2019, 115(22): 221103.
[63] [63] TANG H D, SHI K M, ZHANG N, et al. Up-conversion device based on quantum dots with high-conversion efficiency over 6% [J]. IEEE Access, 2020, 8: 71041-71049.
[64] [64] LI N, LAN Z J, CAI L F, et al. Advances in solution-processable near-infrared phototransistors [J]. Journal of Materials Chemistry C, 2019, 7(13): 3711-3729.
[65] [65] LEE M H, CHOI W H, ZHU F R. Solution-processable organic-inorganic hybrid hole injection layer for high efficiency phosphorescent organic light-emitting diodes [J]. Optics Express, 2016, 24(6): A592-A603.
[66] [66] CHOI W H, TAM H L, ZHU F R, et al. High performance semitransparent phosphorescent white organic light emitting diodes with bi-directional and symmetrical illumination [J]. Applied Physics Letters, 2013, 102(15): 153308.
[67] [67] WANG X, ZHOU J, ZHAO J, et al. High performance fluorescent and phosphorescent organic light-emitting diodes based on a charge-transfer-featured host material [J]. Organic Electronics, 2015, 21: 78-85.
[68] [68] TAKAHASHI T, SEO S, NOWATARI H, et al. Emission mechanism in phosphorescent and fluorescent OLED utilizing energy transfer from exciplex to emitter [J]. Journal of the Society for Information Display, 2016, 24(6): 360-370.
[69] [69] LAU Y S, LAN Z J, LI N, et al. Large-area cesium lead bromide perovskite light-emitting diodes realized by incorporating a hybrid additive [J]. ACS Applied Electronic Materials, 2020, 2(4): 1113-1121.
[70] [70] ZHAO B, LAU Y S, SYED AA, et al. Effect of small molecule additives on efficient operation of all inorganic polycrystalline perovskite light-emitting diodes [J]. Journal of Materials Chemistry C, 2019, 7(18): 5293-5298.
[71] [71] CHEN L X, LEE M H, WANG Y W, et al. Interface dipole for remarkable efficiency enhancement in all-solution-processable transparent inverted quantum dot light-emitting diodes [J]. Journal of Materials Chemistry C, 2018, 6(10): 2596-2603.
[72] [72] CHEN Y H, CHEN J S, MA D G, et al. High power efficiency tandem organic light-emitting diodes based on bulk heterojunction organic bipolar charge generation layer [J]. Applied Physics Letters, 2011, 98(24): 243309.
[73] [73] MUHIEDDINE K, ULLAH M, MAASOUMI F, et al. Hybrid area-emitting transistors: solution processable and with high aperture ratios [J]. Advanced Materials, 2015, 27(42): 6677-6682.
[74] [74] MUCCINI M. A bright future for organic field-effect transistors [J].Nature Materials, 2006, 5(8): 605-613.
[75] [75] ULLAH M, TANDY K, LI J, et al. High-mobility, heterostructure light-emitting transistors and complementary inverters [J]. ACS Photonics, 2014, 1(10): 954-959.
[76] [76] SONG L, HU Y S, LI D W, et al. Pixeled electroluminescence from multilayer heterostructure organic light-emitting transistors [J]. The Journal of Physical Chemistry C, 2015, 119(35): 20237-20243.
[77] [77] MIAO J L, ZHANG F J. Recent progress on photomultiplication type organic photodetectors [J]. Laser & Photonics Reviews, 2019, 13(2): 1800204.
[78] [78] CAO W R, LI J, CHEN H Z, et al. Transparent electrodes for organic optoelectronic devices: a review [J]. Journal of Photonics for Energy, 2014, 4(1): 040990.
[79] [79] LIU Y F, DING T, WANG H R, et al. Improved injection properties of self-passivated degenerated transparent electrode for organic and perovskite light emitting devices [J]. Applied Surface Science, 2020, 504: 144442.
Get Citation
Copy Citation Text
LAU Ying-suet, ZHU Fu-rong. Visualization of near-infrared light and applications[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(1): 78
Category:
Received: Sep. 14, 2020
Accepted: --
Published Online: Aug. 22, 2021
The Author Email: LAU Ying-suet (17481678@life.hkbu.edu.hk)