Chinese Optics Letters, Volume. 20, Issue 12, 122702(2022)
Fabrication, testing, and assembly of high-finesse optical fiber microcavity for molecule cavity QED experiment On the Cover
[1] J. L. Bohn, A. M. Rey, J. Ye. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science, 357, 1002(2017).
[2] S. A. Moses, J. P. Covey, M. T. Miecnikowski, D. S. Jin, J. Ye. New frontiers for quantum gases of polar molecules. Nat. Phys., 13, 13(2017).
[3] Y. Liu, M.-G. Hu, M. A. Nichols, D. Yang, D. Xie, H. Guo, K.-K. Ni. Precision test of statistical dynamics with state-to-state ultracold chemistry. Nature, 593, 379(2021).
[4] W. G. Tobias, K. Matsuda, J.-R. Li, C. Miller, A. N. Carroll, T. Bilitewski, A. M. Rey, J. Ye. Reactions between layer-resolved molecules mediated by dipolar spin exchange. Science, 375, 1299(2022).
[5] H. Yang, X.-Y. Wang, Z. Su, J. Cao, D.-C. Zhang, J. Rui, B. Zhao, C.-L. Bai, J.-W. Pan. Evidence for the association of triatomic molecules in ultracold 23Na40K + 40K mixtures. Nature, 602, 229(2022).
[6] H. Weimer. Quantum simulation of many-body spin interactions with ultracold polar molecules. Mol. Phys., 111, 1753(2013).
[7] T. Schuster, F. Flicker, M. Li, S. Kotochigova, J. E. Moore, J. Ye, N. Y. Yao. Floquet engineering ultracold polar molecules to simulate topological insulators. Phys. Rev. A, 103, 063322(2021).
[8] P. Yu, L. W. Cheuk, I. Kozyryev, J. M. Doyle. A scalable quantum computing platform using symmetric-top molecules. New J. Phys., 21, 093049(2019).
[9] S. F. Yelin, K. Kirby, R. Côté. Schemes for robust quantum computation with polar molecules. Phys. Rev. A, 74, 050301(2006).
[10] V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, A. Collaboration. Improved limit on the electric dipole moment of the electron. Nature, 562, 355(2018).
[11] T. Bilitewski, L. De Marco, J.-R. Li, K. Matsuda, W. G. Tobias, G. Valtolina, J. Ye, A. M. Rey. Dynamical generation of spin squeezing in ultracold dipolar molecules. Phys. Rev. Lett., 126, 113401(2021).
[12] B. L. Augenbraun, Z. D. Lasner, A. Frenett, H. Sawaoka, C. Miller, T. C. Steimle, J. M. Doyle. Laser-cooled polyatomic molecules for improved electron electric dipole moment searches. New J. Phys., 22, 022003(2020).
[13] E. B. Norrgard, D. J. McCarron, M. H. Steinecker, M. R. Tarbutt, D. DeMille. Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap. Phys. Rev. Lett., 116, 063004(2016).
[14] S. Ding, Y. Wu, I. A. Finneran, J. J. Burau, J. Ye. Sub-Doppler cooling and compressed trapping of YO molecules at µK temperatures. Phys. Rev. X, 10, 021049(2020).
[15] L. Anderegg, B. L. Augenbraun, E. Chae, B. Hemmerling, N. R. Hutzler, A. Ravi, A. Collopy, J. Ye, W. Ketterle, J. M. Doyle. Radio frequency magneto-optical trapping of CaF with high density. Phys. Rev. Lett., 119, 103201(2017).
[16] L. Anderegg, L. W. Cheuk, Y. Bao, S. Burchesky, W. Ketterle, K.-K. Ni, J. M. Doyle. An optical tweezer array of ultracold molecules. Science, 365, 1156(2019).
[17] Y. Wu, J. J. Burau, K. Mehling, J. Ye, S. Ding. High phase-space density of laser-cooled molecules in an optical lattice. Phys. Rev. Lett., 127, 263201(2021).
[18] K. M. Jones, E. Tiesinga, P. D. Lett, P. S. Julienne. Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering. Rev. Mod. Phys., 78, 483(2006).
[19] C. Chin, R. Grimm, P. Julienne, E. Tiesinga. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82, 1225(2010).
[20] K. Bergmann, H.-C. Nägerl, C. Panda, G. Gabrielse, E. Miloglyadov, M. Quack, G. Seyfang, G. Wichmann, S. Ospelkaus, A. Kuhn, S. Longhi, A. Szameit, P. Pirro, B. Hillebrands, X.-F. Zhu, J. Zhu, M. Drewsen, W. K. Hensinger, S. Weidt, T. Halfmann, H.-L. Wang, G. S. Paraoanu, N. V. Vitanov, J. Mompart, T. Busch, T. J. Barnum, D. D. Grimes, R. W. Field, M. G. Raizen, E. Narevicius, M. Auzinsh, D. Budker, A. Pálffy, C. H. Keitel. Roadmap on STIRAP applications. J. Phys. B, 52, 202001(2019).
[21] L. D. Marco, G. Valtolina, K. Matsuda, W. G. Tobias, J. P. Covey, J. Ye. A degenerate Fermi gas of polar molecules. Science, 363, 853(2019).
[22] X. He, K. Wang, J. Zhuang, P. Xu, X. Gao, R. Guo, C. Sheng, M. Liu, J. Wang, J. Li, G. V. Shlyapnikov, M. Zhan. Coherently forming a single molecule in an optical trap. Science, 370, 331(2020).
[23] Y. Yu, K. Wang, J. D. Hood, L. R. B. Picard, J. T. Zhang, W. B. Cairncross, J. M. Hutson, R. Gonzalez-Ferez, T. Rosenband, K.-K. Ni. Coherent optical creation of a single molecule. Phys. Rev. X, 11, 031061(2021).
[24] N. Tomm, A. Javadi, N. O. Antoniadis, D. Najer, M. C. Löbl, A. R. Korsch, R. Schott, S. R. Valentin, A. D. Wieck, A. Ludwig, R. J. Warburton. A bright and fast source of coherent single photons. Nat. Nanotechnol., 16, 399(2021).
[25] Y. Huang, Z. Dang, X. He, Z. Fang. Engineering of single-photon emitters in hexagonal boron nitride [Invited]. Chin. Opt. Lett., 20, 032701(2022).
[26] M. Brekenfeld, D. Niemietz, J. D. Christesen, G. Rempe. A quantum network node with crossed optical fibre cavities. Nat. Phys., 16, 647(2020).
[27] S. Daiss, S. Langenfeld, S. Welte, E. Distante, P. Thomas, L. Hartung, O. Morin, G. Rempe. A quantum-logic gate between distant quantum-network modules. Science, 371, 614(2021).
[28] D. Wang, H. Kelkar, D. Martin-Cano, D. Rattenbacher, A. Shkarin, T. Utikal, S. Götzinger, V. Sandoghdar. Turning a molecule into a coherent two-level quantum system. Nat. Phys., 15, 483(2019).
[29] T. Kampschulte, J. Hecker Denschlag. Cavity-controlled formation of ultracold molecules. New J. Phys., 20, 123015(2018).
[30] J. Pérez-Ríos, M. E. Kim, C.-L. Hung. Ultracold molecule assembly with photonic crystals. New J. Phys., 19, 123035(2017).
[31] D. Wellnitz, S. Schütz, S. Whitlock, J. Schachenmayer, G. Pupillo. Collective dissipative molecule formation in a cavity. Phys. Rev. Lett., 125, 193201(2020).
[32] M. Zhu, Y.-C. Wei, C.-L. Hung. Resonator-assisted single-molecule quantum state detection. Phys. Rev. A, 102, 023716(2020).
[33] F. Herrera, F. C. Spano. Cavity-controlled chemistry in molecular ensembles. Phys. Rev. Lett., 116, 238301(2016).
[34] F. J. Garcia-Vidal, C. Ciuti, T. W. Ebbesen. Manipulating matter by strong coupling to vacuum fields. Science, 373, eabd0336(2021).
[35] D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, J. Reichel. A fiber Fabry-Perot cavity with high finesse. New J. Phys., 12, 065038(2010).
[36] H. Pfeifer, L. Ratschbacher, J. Gallego, C. Saavedra, A. Faßbender, A. von Haaren, W. Alt, S. Hofferberth, M. Köhl, S. Linden, D. Meschede. Achievements and perspectives of optical fiber Fabry-Perot cavities. Appl. Phys. B, 128, 29(2022).
[37] L. Zhou, C. Wang, A. Yi, C. Shen, Y. Zhu, K. Huang, M. Zhou, J. Zhang, X. Ou. Photonic crystal nanobeam cavities based on 4H-silicon carbide on insulator. Chin. Opt. Lett., 20, 031302(2022).
[38] L. Fang, X. Gan, J. Zhao. High-Q factor photonic crystal cavities with cut air holes [Invited]. Chin. Opt. Lett., 18, 111402(2020).
[39] S. Subramanian, S. Vincent, F. Vollmer. Effective linewidth shifts in single-molecule detection using optical whispering gallery modes. Appl. Phys. Lett., 117, 151106(2020).
[40] M. A. Bellos, D. Rahmlow, R. Carollo, J. Banerjee, O. Dulieu, A. Gerdes, E. E. Eyler, P. L. Gould, W. C. Stwalley. Formation of ultracold Rb2 molecules in the v″ = 0 level of the a3Σu+ state via blue-detuned photoassociation to the 13πg state. Phys. Chem. Chem. Phys., 13, 18880(2011).
[41] M. H. Bitarafan, R. G. DeCorby. On-chip high-finesse Fabry-Perot microcavities for optical sensing and quantum information. Sensors, 17, 1748(2017).
[42] M. Uphoff, M. Brekenfeld, G. Rempe, S. Ritter. Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities. New J. Phys., 17, 013053(2015).
[43] J.-M. Cui, K. Zhou, M.-S. Zhao, M.-Z. Ai, C.-K. Hu, Q. Li, B.-H. Liu, J.-L. Peng, Y.-F. Huang, C.-F. Li, G.-C. Guo. Polarization nondegenerate fiber Fabry-Perot cavities with large tunable splittings. Appl. Phys. Lett., 112, 171105(2018).
[44] J. Gallego, S. Ghosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, L. Ratschbacher. High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis. Appl. Phys. B, 122, 47(2016).
[45] Y. Zhao, Y. Wang, H. Gong, J. Shao, Z. Fan. Annealing effects on structure and laser-induced damage threshold of Ta2O5/SiO2 dielectric mirrors. Appl. Surf. Sci., 210, 353(2003).
[46] B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, T. E. Northup. Integrated fiber-mirror ion trap for strong ion-cavity coupling. Rev. Sci. Instrum., 84, 123104(2013).
[47] D. Gangloff, M. Shi, T. Wu, A. Bylinskii, B. Braverman, M. Gutierrez, R. Nichols, J. Li, K. Aichholz, M. Cetina, L. Karpa, B. Jelenković, I. Chuang, V. Vuletić. Preventing and reversing vacuum-induced optical losses in high-finesse tantalum (V) oxide mirror coatings. Opt. Express, 23, 18014(2015).
[48] J. Gallego, W. Alt, T. Macha, M. Martinez-Dorantes, D. Pandey, D. Meschede. Strong purcell effect on a neutral atom trapped in an open fiber cavity. Phys. Rev. Lett., 121, 173603(2018).
Get Citation
Copy Citation Text
Yuhao Pan, Li Li, Xiaolong Zhou, Dongyu Huang, Zemin Shen, Jian Wang, Chuanfeng Li, Guangcan Guo, "Fabrication, testing, and assembly of high-finesse optical fiber microcavity for molecule cavity QED experiment," Chin. Opt. Lett. 20, 122702 (2022)
Category: Quantum Optics and Quantum Information
Received: Apr. 26, 2022
Accepted: Jun. 27, 2022
Published Online: Aug. 19, 2022
The Author Email: Jian Wang (jwang28@ustc.edu.cn)