Laser & Optoelectronics Progress, Volume. 52, Issue 1, 11401(2015)
Study of Lasing Characteristics in Strongly Coupled Nano-Cavity Array
[1] [1] Zhang Yin, Wang Qing. Research of automatic frequency stability diode laser [J]. Chinese J Lasers, 2014, 41(6): 0602001.
[2] [2] Matsubara H, Yoshimoto S, Saito H, et al.. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths[J].Science, 2008, 319(5862): 445-447.
[3] [3] Englund D, Altug H, Ellis B, et al.. Ultrafast photonic crystal lasers[J]. Laser & Photonics Reviews, 2008, 2(4): 264-274.
[4] [4] Zhou W, Dridi M, Suh J Y, et al.. Lasing action in strongly coupled plasmonic nanocavity arrays[J]. Nature nanotechnology, 2013, 8(7): 506-511.
[5] [5] Lu Sheqin, Li Chaoran, Wu Yuehao, et al.. Research progress of micro/nano-optical device based on chalcogenide glass[J]. Lasers & Optoelectronics Progress, 2014, 51(5): 050001.
[6] [6] Mayer K M, Lee S, Liao H, et al.. A label- free immunoassay based upon localized surface plasmon resonance of gold nanorods[J]. Acs Nano, 2008, 2(4): 687-692.
[7] [7] Sherry L J, Chang S H, Schatz G C, et al.. Localized surface plasmon resonance spectroscopy of single silver nanocubes[J]. Nano Letters, 2005, 5(10): 2034-2038.
[8] [8] Ashkin A, Dziedzic J M, Bjorkholm J E, et al.. Observation of a single- beam gradient force optical trapfor dielectric particles[J]. Opt Lett, 1986, 11(5): 288-290.
[9] [9] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.
[10] [10] Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single- molecule fluorescence[J]. Physical Review Letters, 2006, 96(11): 113002.
[11] [11] Altug H, Englund D, Vuc kovic J. Ultrafast photonic crystal nanocavity laser[J]. Nature Physics, 2006, 2(7): 484-488.
[12] [12] Noginov M A, Zhu G, Belgrave A M, et al.. Demonstration of a spaser- based nanolaser[J]. Nature, 2009, 460(7259):1110-1112.
[13] [13] Auguié B, Barnes W L. Collective resonances in gold nanoparticle arrays[J]. Physical Review Letters, 2008, 101(14):143902.
[14] [14] Hessel A, Oliner A A. A new theory of Wood′s anomalies on optical gratings[J]. Applied Optics, 1965, 4(10): 1275-1297.
[15] [15] Raether H. Surface plasmons on gratings[J]. Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1988,111: 91-116.
[17] [17] Chu Y, Schonbrun E, Yang T, et al.. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays[J]. Applied Physics Letters, 2008, 93(18): 181108.
[18] [18] Nagra A S, York R A. FDTD analysis of wave propagation in nonlinear absorbing and gain media[J]. Antennas and Propagation, IEEE Transactions on, 1998, 46(3): 334-340.
[19] [19] Yee K S. Numerical solution of initial boundary value problems involving Maxwell′ s equations in isotropic media[J].IEEE Trans Antennas Propag, 1966, 14(3): 302-307.
[20] [20] Chang S H, Taflove A. Finite- difference time- domain model of lasing action in a four-level two-electron atomic system[J]. Optics Express, 2004, 12(16): 3827-3833.
[21] [21] Yamilov A, Chang S H, Burin A, et al.. Field and intensity correlations in amplifying random media[J]. Physical Review B, 2005, 71(9): 092201.
Get Citation
Copy Citation Text
Li Peng, Zhang Cheng, Ni Yuan, Yue Wencheng, Wang Guan, Fu Qiang. Study of Lasing Characteristics in Strongly Coupled Nano-Cavity Array[J]. Laser & Optoelectronics Progress, 2015, 52(1): 11401
Category: Lasers and Laser Optics
Received: Jul. 29, 2014
Accepted: --
Published Online: Dec. 29, 2014
The Author Email: Li Peng (tzcl@mail.ustc.edu.cn)