Acta Optica Sinica, Volume. 39, Issue 2, 0212008(2019)

Multispectral True Temperature Inversion Based on Multi-Objective Minimization Optimization Method

Fucai Zhang1,2、*, Bojun Sun1, and Xiaogang Sun1、*
Author Affiliations
  • 1 School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
  • 2 Institute of Electrical and Control Engineering, Heilongjiang University of Science and Technology, Harbin, Heilongjiang 150022, China
  • show less
    Figures & Tables(6)
    Variation of spectral emissivity with wavelength. (a) Model A; (b) model B; (c) model C; (d) model D; (e) model E
    Location of three measurement targets
    True temperature curves of three targets
    Curves between spectral emissivity and wavelength
    • Table 1. Simulation data of measured target

      View table

      Table 1. Simulation data of measured target

      No.Range of emissivityTrue temperature /KBrightness temperature (0.4 μm) /KBrightness temperature (0.5 μm) /KBrightness temperature (0.6 μm) /K
      A0.45-0.951800.01785.51768.21747.5
      2000.01982.11962.61935.4
      B0.50-0.901800.01739.71735.11733.5
      2000.01925.81920.21918.3
      C0.70-0.901800.01786.51777.91763.7
      2000.01983.41972.81955.2
      D0.65-0.851800.01768.41763.81760.2
      2000.01961.11955.41953.1
      E0.65-0.751800.01765.91763.81762.0
      2000.01958.01955.41953.1
      No.Range of emissivityBrightness temperature (0.7 μm) /KBrightness temperature(0.8 μm) /KBrightness temperature(0.9 μm) /KBrightness temperature(1.0 μm) /KBrightness temperature(1.1 μm) /K
      A0.45-0.951722.91698.41669.71648.61621.8
      1908.21878.91840.41814.81782.4
      B0.50-0.901734.61738.01743.51751.11760.6
      1919.51923.71930.51939.81951.5
      C0.70-0.901747.61738.01746.01751.11760.6
      1935.51923.71933.61939.81951.5
      D0.65-0.851757.81756.31746.01734.71722.1
      1952.81962.01933.61919.71900.5
      E0.65-0.751749.71738.01738.41734.71722.1
      1938.11923.71924.21919.71904.3
    • Table 2. Result comparison of two iterative methods

      View table

      Table 2. Result comparison of two iterative methods

      Model No.Range of emissivityTrue temperature /KTemperature by SMM method /KAccuracy in SMM method /%Time in SMM method /sTemperature by MMO method /KAccuracy in MMO method /%Time in MMO method /sEnhancement ratio of MMO method /%
      A0.45-0.951800.01793.3-0.3785.34541800.00.001.789197.90
      2000.01998.8-0.0680.66922000.00.001.972397.56
      B0.50-0.901800.01791.5-0.3175.89901785.9-0.781.873297.53
      2000.01988.7-0.5778.35411982.7-0.871.879397.60
      C0.70-0.901800.01798.7-0.0770.64041799.8-0.011.900497.31
      2000.01996.2-0.1980.63062000.00.001.786197.78
      D0.65-0.851800.01802.20.1271.02591806.70.371.880497.35
      2000.02009.20.4681.30682008.30.421.876197.69
      E0.65-0.751800.01802.30.1273.97361804.10.231.658297.76
      2000.02005.30.2788.02542005.00.251.843297.91
    Tools

    Get Citation

    Copy Citation Text

    Fucai Zhang, Bojun Sun, Xiaogang Sun. Multispectral True Temperature Inversion Based on Multi-Objective Minimization Optimization Method[J]. Acta Optica Sinica, 2019, 39(2): 0212008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: May. 7, 2018

    Accepted: Oct. 9, 2018

    Published Online: May. 10, 2019

    The Author Email:

    DOI:10.3788/AOS201939.0212008

    Topics