Chinese Journal of Lasers, Volume. 42, Issue 3, 315003(2015)

Raman Spectral Profiles of PHB Synthesis by Cupriavidus necator H16 at Different Fructose Levels

Qin Zhaojun1,2、*, Peng Lixin3, Zhu Libo3, Song Shuishan4, Liu Junxian1, and Wang Guiwen3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(28)

    [1] [1] Keshavarz T, Roy I. Polyhydroxyalkanoates: Bioplastics with a green agenda[J]. Current Opinion in Microbiology, 2010, 13(3): 321-326.

    [2] [2] Suriyamongkol P, Weselake R, Narine S, et al.. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - a review[J]. Biotechnology Advances, 2007, 25(2): 148-175.

    [3] [3] Grage K, Jahns A C, Parlane N, et al.. Bacterial polyhydroxyalkanoate granules: Biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications[J]. Biomacromolecules, 2009, 10(4): 660-669.

    [4] [4] Lee S Y. Bacterial polyhydroxyalkanoates[J]. Biotechnology and Bioengineering, 1996, 49(1): 1-14.

    [5] [5] Kuchta K, Chi L, Fuchs H, et al.. Studies on the influence of phasins on accumulation and degradation of PHB and nanostructure of PHB granules in Ralstonia eutropha H16[J]. Biomacromolecules, 2007, 8(2): 657-662.

    [6] [6] Yoshie N, Goto Y, Sakurai M, et al.. Biosynthesis and n.m.r. studies of deuterated poly (3-hydroxybutyrate) produced by Alcaligenes eutrophus H16[J]. International Journal of Biological Macromolecules, 1992, 14(2): 81-86.

    [7] [7] Verlinden R A, Hill D J, Kenward M A, et al.. Bacterial synthesis of biodegradable polyhydroxyalkanoates[J]. Journal of Applied Microbiology, 2007, 102(6): 1437-1449.

    [8] [8] Peplinski K, Ehrenreich A, Doring C, et al.. Genome-wide transcriptome analyses of the 'Knallgas' bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism[J]. Microbiology, 2010, 156(7): 2136-2152.

    [9] [9] Cramm R. Genomic view of energy metabolism in Ralstonia eutropha H16[J]. Journal of Molecular Microbiology and Biotechnology, 2008, 16: 38-52.

    [10] [10] York G M, Lupberger J, Tian J, et al.. Ralstonia eutropha H16 encodes two and possibly three intracellular poly[D- (- )- 3-hydroxybutyrate] depolymerase genes[J]. Journal of Bacteriology, 2003, 185(13): 3788-3794.

    [11] [11] Saegusa H, Shiraki M, Kanai C, et al.. Cloning of an intracellular poly[D(-)-3-hydroxybutyrate] depolymerase gene from Ralstonia eutropha H16 and characterization of the gene product[J]. Journal of Bacteriology, 2001, 183(1): 94-100.

    [12] [12] Petry R, Schmitt M, Popp J. Raman spectroscopy — a prospective tool in the life sciences[J]. Chemphyschem, 2003, 4(1): 14-30.

    [13] [13] Sun Meijuan, Jiang Yuling, Lai Aihua, et al.. Analysis of lipid and carotenoids in Rhodosporidium toruloides using laser tweezer Raman spectroscopy[J]. Laser & Optoelectronics Progress, 2013, 50(3): 033001.

    [14] [14] Jiang Yuling, Liu Junxian, Chen Yue, et al.. Screening of carotenoid high- producing mutants from Rhodotorula glutinis using Raman spectroscopy in situ quantitative detection technology[J]. Chinese J Lasers, 2014, 41(2): 0215002.

    [16] [16] Jarute G, Kainz A, Schroll G, et al.. On-line determination of the intracellular poly (beta-hydroxybutyric acid) content in transformed Escherichia coli and glucose during PHB production using stopped-flow attenuated total reflection FT-IR spectrometry[J]. Analytical Chemistry, 2004, 76(21): 6353-6358.

    [17] [17] Brehm-Stecher B F, Johnson E A. Single-cell microbiology: Tools, technologies, and applications[J]. Microbiology and Molecular Biology Reviews, 2004, 68(3): 538-559.

    [18] [18] Peng L, Wang G, Liao W, et al.. Intracellular ethanol accumulation in yeast cells during aerobic fermentation: A Raman spectroscopic exploration[J]. Letters in Applied Microbiology, 2010, 51(6): 632-638.

    [19] [19] Li Zida, Lai Junzhuo, Liao Wei, et al.. Raman spectroscopic profile of ethanol fermentation in high gravity cassava starch brewing[J]. Acta Optica Sinica, 2012, 32(3): 0317001.

    [20] [20] Qin Zhaojun, Lai Junzhuo, Liu Bin, et al.. Raman spetroscopic analysis of ethanol fermentation at various initial pH levels[J]. Chinese J Lasers, 2013, 40(2): 0215001.

    [21] [21] Gelder J D, Willemse-Erix D, Scholtes M J, et al.. Monitoring poly (3-hydroxybutyrate) production in Cupriavidus necator DSM 428 (H16) with Raman spectroscopy[J]. Analytical Chemistry, 2008, 80(6): 2155-2160.

    [22] [22] Hermelink A, Stammler M, Naumann D. Observation of content and heterogeneity of poly - β - hydroxybutyric acid (PHB) in Legionella bozemanii by vibrational spectroscopy[J]. The Analyst, 2011, 136(6): 1129-1133.

    [23] [23] Zhao Liangqi, Han Guangye. Improvement on indophenol-blue colorimetry and its application in fermentation process[J]. Journal of Shanxi University, 1999, 22(3): 265-269.

    [24] [24] Xie C, Dinno M A, Li Y Q. Near-infrared Raman spectroscopy of single optically trapped biological cells[J]. Optics Letters, 2002, 27(4): 249-251.

    [25] [25] Notingher I, Verrier S, Haque S, et al.. Spectroscopic study of human lung epithelial cells (A549) in culture: Living cells versus dead cells[J]. Biopolymers, 2003, 72(4): 230-240.

    [26] [26] Izumi C M, Temperini M L. FT-Raman investigation of biodegradable polymers: Poly (3-hydroxybutyrate) and poly (3-hydroxybutyrateco-3-hydroxyvalerate)[J]. Vibrational Spectroscopy, 2010, 54(2): 127-132.

    [27] [27] Furukawa T, Sato H, Murakami R, et al.. Raman microspectroscopy study of structure, dispersibility, and crystallinity of poly (hydroxybutyrate)/poly (L-lactic acid) blends[J]. Polymer, 2006, 47(9): 3132-3140.

    [28] [28] Suzuki T, Yamane T, Shimizu S. Mass production of poly- β- hydroxybutyric acid by fed- batch culture with controlled carbon/nitrogen feeding[J]. Applied Microbiology and Biotechnology, 1986, 24(5): 370-374.

    CLP Journals

    [1] Kang Jing, Luo Shi, He Jian, Wu Ping, Xu Jing, Fang Xing, Wang Yunyun, Zhang Shuai, Tang Yaoyun. Preliminary Exploration on Diagnosis of Laryngeal Carcinoma Based on Raman Spectroscopy[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111701

    [2] Tao Zhanhua, Ke Ke, Shi Deqiang, Zhu Libo. Effect of Environmental Factors on Staphyloxanthin Biosynthesis Based on Laser Tweezers Raman Spectroscopy[J]. Laser & Optoelectronics Progress, 2017, 54(12): 123001

    [3] [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Application of CEEMDAN in Raman Spectroscopy Denoising[J]. Laser & Optoelectronics Progress, 2015, 52(11): 113003

    [4] Qin Zhaojun, Tao Zhanhua, Liao Wei, Chen Zhenying, Li Yongqing, Wang Guiwen. Raman Spectral Profiles of PHB Synthesis Influenced by Different Nitrogen Sources[J]. Acta Optica Sinica, 2016, 36(4): 417001

    [5] Xu Bin, Lin Manman, Yao Huilu, Liu Junxian. Measurement of Hemoglobin Concentration of Single Red Blood Cell Using Raman Spectroscopy[J]. Chinese Journal of Lasers, 2016, 43(1): 115003

    Tools

    Get Citation

    Copy Citation Text

    Qin Zhaojun, Peng Lixin, Zhu Libo, Song Shuishan, Liu Junxian, Wang Guiwen. Raman Spectral Profiles of PHB Synthesis by Cupriavidus necator H16 at Different Fructose Levels[J]. Chinese Journal of Lasers, 2015, 42(3): 315003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Sep. 17, 2014

    Accepted: --

    Published Online: Feb. 13, 2015

    The Author Email: Zhaojun Qin (qzhaojun86@163.com)

    DOI:10.3788/cjl201542.0315003

    Topics