Laser Journal, Volume. 46, Issue 1, 9(2025)
Study and application of spectroscopic detection of microplastics in
[2] [2] Cunningham E M, Ehlers M, Kiriakoulakis K, et al. The accumulation of microplastic pollution in a commercially important fishing ground[J]. Scientific Reports, 2022, 12(1): 4217-4217.
[3] [3] Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): 1700782-1700782.
[4] [4] Lebreton L, Andrady A. Future scenarios of global plastic waste generation and disposal[J]. Palgrave Communications, 2019, 5(1): 1-11.
[6] [6] Dawson A L, Kawaguchi S, King C K, et al. Turning microplastics into nanoplastics throughdigestive fragmentation by Antarctic krill[J]. Nature communications, 2018, 9(1): 1001.
[7] [7] Steiner T, Zhang Y, Moller J N, et al. Municipalbiowaste treatment plants contribute to thecontamination of the environment with residues of biodegradable plastics with putative higherpersistence potential[J]. Scientific Reports, 2022, 12(1): 9021.
[9] [9] Browne M A, Underwood A J, Chapman M G, et al. Linking effects of anthropogenic debristo ecological impacts[J]. Proceedings of the Royal Society B: Biological sciences, 2015, 282(1807): 20142929.
[12] [12] Lv M J, Jiang B, Xing Y, et al. Recent advances in the breakdown of microplastics: strategiesand future prospectives[J]. Environmental Science and Pollution Research International, 2022, 29(44): 65887-65903.
[14] [14] Miserli K, Lykos C, Kalampounias A G, et al. Screening of Microplastics in Aquaculture Systems (Fish, Mussel, and Water Samples) by FTIR, Scanning Electron Microscopy-Energy Dispersive Spectroscopy and Micro - Raman Spectroscopies[J]. Applied Sciences, 2023, 13(17): 9705.
[16] [16] Joshi R, Priya GG L, Faqeerzada M, et al. Deep Learning-Based Quantitative Assessment of Melamine and Cyanuric Acid in Pet Food Using Fourier Transform Infrared Spectroscopy[J]. Sensors (Basel, Switzerland), 2023, 23(11): 5020.
[24] [24] Mintenig S M, Loder M, Primpke S, et al. Low n-umbers of microplastics detected in drinking water from ground water sources[J]. Science of the Total Environment, 2019, 648(1): 631-635.
[25] [25] Mukotaka A, Kataoka T, Nihei Y. Rapid analyticalmethod for characterization and quantificati - onof microplastics in tap water using a Four - iertransform infrared microscope[J]. Science of the Total Environment, 2021, 790(19): 148231.
[26] [26] Raman C V, Krishnan K S. A New Type of Secondary Radiation[J]. Nature, 1928, 121(3048): 501-502.
[31] [31] Enders K, Lenz R, Stedmon C A, et al. Abun-dance, size and polymer composition ofmarinemicroplastics ≥10m in the Atlantic Ocean and their modelled vertical distribution[J]. Marine Pollution Bulletin, 2015, 100(1): 70-81.
[32] [32] Tong H Y, Jiang Q, Hu X, et al. Occurrence and identification of microplastics in tap water from China[J]. Chemosphere, 2020, 252(8): 126493.
[35] [35] Lu J T, Xue Q S, Bai H X, et al. Design of aconfocalmicro-Raman spectroscopy system and research on microplastics detection[J]. Applied Optics, 2021, 60(27): 8375-8383.
[37] [37] Fleischmann M P, Hendra P J, Mcqui-Llan A J. Raman spectra of pyridine adsorb - ed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.
[39] [39] Holly J B, Lorna A, Benjamin B, et al. Using Raman spectroscopy to characterize biologicalma-terials.[J]. Nature protocols, 2016, 11(4): 664-687.
[40] [40] Pilot R, Signorini R, Durante C, et al. A Revie-w on Surface-Enhanced Raman Scattering[J]. Biosensors, 2019, 9(2): 57-57.
[43] [43] Graeme M, David E, W. Even S, et al. Surface-Enhanced Raman Scattering (SERS) and Surface - Enhanced Resonance Raman Scattering (SERRS): A Review of Applications[J]. Applied Spectroscopy, 2011, 65(8): 825-837.
[44] [44] Yin R H, Ge H W, Chen H, et al. Sensitive and rapid detection of trace microplastics co-ncentrated through Aunanoparticle-decorated sponge on the basis of surface-enhanced Ram - anspectroscopy[J]. Environmental Advances, 2021, 5(7): 100096.
[45] [45] Hu R, Zhang K, Wang W, et al. Quantitative and sensitive analysis of polystyrene nanoplastics down to 50 nm by surface-enhanced Raman spectroscopy in water[J]. Journal of Hazardous Materials, 2022, 429(3): 128388.
[46] [46] Xu D W, Su W, Lu H W, et al. A gold nan-oparticle doped flexible substrate for micropl-astics SERS detection[J]. Physical chemistry chemical physics: PCCP, 2022, 24(19): 12036-12042.
[47] [47] Qin Y Z, Qiu J X, Tang N, et al. Controllablepreparation of mesoporous spike gold nanocrystals for surface - enhanced Raman spectrosco - py detection of micro/nanoplastics in water[J]. Environmental Research, 2023, 228(4): 115926-115926.
[48] [48] Mikac L, Rigo I, Himics L, et al. Surface-enhanced Ramanspectroscopy for the detection of microplastics[J]. Applied Surface Science, 2023, 608(1): 1-9.
Get Citation
Copy Citation Text
JIA Chunrong, MENG Miao, GAO Jianxin, TANG Yukun, DONG Zhengxuan, DI Zhigang. Study and application of spectroscopic detection of microplastics in[J]. Laser Journal, 2025, 46(1): 9
Category:
Received: Jun. 24, 2024
Accepted: Apr. 17, 2025
Published Online: Apr. 17, 2025
The Author Email: DI Zhigang (dzg0512@126.com)