Optoelectronic Technology, Volume. 44, Issue 1, 54(2024)

Research on Deep Learning‑based Classification and Localization Algorithm for Photovoltaic Panel Defects

Xiaoxiong LIU and Qianying ZHENG
Author Affiliations
  • College of Physics and Information Engineering, Fuzhou University, Fuzhou350108, CHN
  • show less
    References(16)

    [1] Choi K, Suh J. Fault detection and power loss assessment for rooftop photovoltaics installed in a university campus, by use of UAV-based infrared thermography[J]. Energies, 16, 4513-4529(2023).

    [2] Li X, Li W, Yang Q et al. An unmanned inspection system for multiple defects detection in photovoltaic plants[J]. IEEE Journal of Photovoltaics, 10, 568-576(2020).

    [3] Segovia Ramirez I, Das B, Garcia Marquez F P. Fault detection and diagnosis in photovoltaic panels by radiometric sensors embedded in unmanned aerial vehicles[J]. Progress in Photovoltaics: Research and Applications, 30, 240-256(2022).

    [4] Nie J, Luo T, Li H. Automatic hotspots detection based on UAV infrared images for large-scale PV plant[J]. Electronics Letters, 56, 993-995(2020).

    [5] Zhang Z, Cao Y, Yang Q. Defect detection and classification of photovoltaic modules based on image fusion analysis[C], 2460-2465(2022).

    [6] Ismail H, Rahmani A, Aljasmi N et al. Stitching approach for PV panel detection[C], 1-4(2020).

    [7] Grimaccia F, Leva S, Niccolai A. PV plant digital mapping for modules' defects detection by unmanned aerial vehicles[J]. IET Renewable Power Generation, 11, 1221-1228(2017).

    [8] Francesco G, Sonia L, Alessandro N. A semi-automated method for defect identification in large photovoltaic power plants using unmanned aerial vehicles[C]. OR, 1-5(2018).

    [9] Aghaei M, Leva S, Grimaccia F. PV power plant inspection by image mosaicing techniques for IR real-time images[C]. OR, 3100-3105(2016).

    [10] Kuo C F J, Chen S H, Huang C Y. Automatic detection, classification and localization of defects in large photovoltaic plants using unmanned aerial vehicles (UAV) based infrared (IR) and RGB imaging[J]. Energy Conversion and Management, 276, 116495(2023).

    [11] Henry C, Poudel S, Lee S W et al. Automatic detection system of deteriorated pv modules using drone with thermal camera[J]. Applied Sciences, 10, 3802(2020).

    [12] Tareen S A K, Saleem Z. A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK[C], 1-10(2018).

    [13] Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks[C], 6105-6114(2019).

    [14] He K, Zhang X, Ren S et al. Deep residual learning for image recognition[C], 770-778(2016).

    [15] Howard A, Sandler M, Chu G et al. Searching for mobilenetv3[C], 1314-1324(2019).

    [16] Radosavovic I, Kosaraju R P, Girshick R et al. Designing network design spaces[C]. WA, 10428-10436(2020).

    Tools

    Get Citation

    Copy Citation Text

    Xiaoxiong LIU, Qianying ZHENG. Research on Deep Learning‑based Classification and Localization Algorithm for Photovoltaic Panel Defects[J]. Optoelectronic Technology, 2024, 44(1): 54

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 7, 2023

    Accepted: --

    Published Online: Jul. 18, 2024

    The Author Email:

    DOI:10.12450/j.gdzjs.202401010

    Topics