Acta Photonica Sinica, Volume. 52, Issue 10, 1052409(2023)

Recent Development of Quantum Cascade Lasers for On-chip Sensing(Invited)

Binru ZHOU1,2,3, Yu MA1, Shichen ZHANG1, Fengqi LIU4, and Quanyong LU1、*
Author Affiliations
  • 1Division of Quantum Materials and Devices,Beijing Academy of Quantum Information Sciences,Beijing 100193,China
  • 2Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China
  • 3School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China
  • 4Key Laboratory of Semiconductor Materials Science,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
  • show less
    References(88)

    [1] CORRIGAN P, MARTINI R, WHITTAKER E A et al. Quantum cascade lasers and the Kruse model in free space optical communication[J]. Optics Express, 17, 4355-4359(2009).

    [2] VAMPA G, HAMMOND T J, THIRE N et al. Linking high harmonics from gases and solids[J]. Nature, 522, 462-464(2015).

    [3] RAZEGHI M, LU Q Y, BANDYOPADHYAY N et al. Quantum cascade lasers: from tool to product[J]. Optics Express, 23, 8462-8475(2015).

    [4] GMACHL C, CAPASSO F, SIVCO D L et al. Recent progress in quantum cascade lasers and applications[J]. Reports on Progress in Physics, 64, 1533-1601(2001).

    [5] TITTEL F K, RICHTER D, FRIED A. Mid-infrared laser applications in spectroscopy[M]. SOROKINA I T, 445-510(2003).

    [6] ROELKENS G, LIU L, LIANG D et al. III-V/silicon photonics for on-chip and inter-chip optical interconnects[J]. Laser & Photonics Reviews, 4, 751-779(2010).

    [7] ZHANG K S, COUDREAU T, MARTINELLI M et al. Generation of bright squeezed light at 1.06 μm using cascaded nonlinearities in a triply resonant CW periodically-poled lithium niobate optical parametric oscillator[J]. Physical Review A, 64, 033815(2001).

    [8] OLAFSEN L J, AIFER E H, VURGAFTMAN I et al. Near-room-temperature mid-infrared interband cascade laser[J]. Applied Physics Letters, 72, 2370-2372(1998).

    [9] MEYER J R, VURGAFTMAN I, YANG R Q et al. Type-II and type-I interband cascade lasers[J]. Electronics Letters, 32, 45-46(1996).

    [10] ESAKI L, TSU R. Superlattice and negative differential conductivity in semiconductors[J]. Ibm Journal of Research and Development, 14, 61-65(1970).

    [12] SMITH A M, NIE S M. Semiconductor nanocrystals: structure, properties, and band gap engineering[J]. Accounts of Chemical Research, 43, 190-200(2010).

    [13] FAIST J, CAPASSO F, SIVCO D L et al. Quantum cascade laser[J]. Science, 264, 553-556(1994).

    [14] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [15] TIWARI S, WAHL J A, SILVA H et al. Small silicon memories: confinement, single-electron, and interface state considerations[J]. Applied Physics a-Materials Science & Processing, 71, 403-414(2000).

    [16] ZLATANOVIC S, PARK J S, MORO S et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source[J]. Nature Photonics, 4, 561-564(2010).

    [17] CHEN Lianghui, YANG Guowen, LIU Yuxian. Development of semiconductor lasers[J]. Chinese Journal of Lasers, 47, 0500001(2020).

    [18] BECK M, HOFSTETTER D, AELLEN T et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 295, 301-305(2002).

    [19] MAULINI R, MOHAN A, GIOVANNINI M et al. External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade[J]. Applied Physics Letters, 88, 201113(2006).

    [20] LIU F Q, LI L, WANG L J et al. Solid source MBE growth of quantum cascade lasers[J]. Applied Physics a-Materials Science & Processing, 97, 527-532(2009).

    [21] LI Z P, WAN W J, ZHOU K et al. On-chip dual-comb source based on terahertz quantum cascade lasers under microwave double injection[J]. Physical Review Applied, 12, 044068(2019).

    [22] ZHANG J, PENG H Y, WANG J et al. Dense spectral beam combining of quantum cascade lasers by multiplexing a pair of blazed gratings[J]. Optics Express, 30 2, 966-971(2021).

    [23] BAI Y, BANDYOPADHYAY N, TSAO S et al. Room temperature quantum cascade lasers with 27% wall plug efficiency[J]. Applied Physics Letters, 98, 181102(2011).

    [24] ZHOU W, LU Q Y, WU D H et al. High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 µm[J]. Optics Express, 27, 15776-15785(2019).

    [25] BAI Y, BANDYOPADHYAY N, TSAO S et al. Highly temperature insensitive quantum cascade lasers[J]. Applied Physics Letters, 97, 251104(2010).

    [26] BAI Y, DARVISH S R, SLIVKEN S et al. Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power[J]. Applied Physics Letters, 92, 101105(2008).

    [27] FAIST J, BECK M, AELLEN T et al. Quantum-cascade lasers based on a bound-to-continuum transition[J]. Applied Physics Letters, 78, 147-149(2001).

    [28] BISMUTO A, TERAZZI R, BECK M et al. Electrically tunable, high performance quantum cascade laser[J]. Applied Physics Letters, 96, 141105(2010).

    [29] RAZEGHI M, SLIVKEN S, BAI Y B et al. High power quantum cascade lasers[J]. New Journal of Physics, 11, 125017(2009).

    [30] LYAKH A, MAULINI R, TSEKOUN A et al. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach[J]. Applied Physics Letters, 95, 141113(2009).

    [31] LYAKH A, SUTTINGER M, GO R et al. 5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%[J]. Applied Physics Letters, 109, 121109(2016).

    [32] WANG F H, SLIVKEN S, WU D H et al. Room temperature quantum cascade laser with ∼31% wall-plug efficiency[J]. AIP Advances, 10, 075012(2020).

    [33] WANG F, SLIVKEN S, WU D H et al. Continuous wave quantum cascade lasers with 5.6 W output power at room temperature and 41% wall-plug efficiency in cryogenic operation[J]. Aip Advances, 10, 055120(2020).

    [34] RAZEGHI M, BANDYOPADHYAY N, BAI Y et al. Recent advances in mid infrared (3-5µm) quantum cascade lasers[J]. Optical Materials Express, 3, 1872-1884(2013).

    [35] WANG H, ZHANG J C, CHENG F M et al. Watt-level, high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 7.7 μm[J]. Optics Express, 28, 40155-40163(2020).

    [36] FEI T, ZHAI S, ZHANG J et al. 3 W continuous-wave room temperature quantum cascade laser grown by metal-organic chemical vapor deposition[J]. Photonics, 10, 47(2023).

    [37] MAWST L J, BOTEZ D. High-power mid-infrared (λ~ 3-6 μm) quantum cascade lasers[J]. IEEE Photonics Journal, 14, 1-25(2022).

    [38] MENG B, WANG Q. Broadly tunable single-mode mid-infrared quantum cascade lasers[J]. Journal of Optics, 17, 023001(2015).

    [39] WANG Y, SOSKIND M G, WANG W et al. High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers[J]. Applied Physics Letters, 104, 031114(2014).

    [40] FAIST J, GMACHL C, CAPASSO F et al. Distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 70, 2670-2672(1997).

    [41] LU Q Y, BAI Y, BANDYOPADHYAY N et al. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 98, 181106(2011).

    [42] LU Q Y, BAI Y, BANDYOPADHYAY N et al. Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output[J]. Applied Physics Letters, 97, 231119(2010).

    [43] ZHANG J C, LIU F Q, TAN S et al. High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth[J]. Applied Physics Letters, 100, 112105(2012).

    [44] XIE F, CANEAU C G, LEBLANC H P et al. High power and high temperature continuous-wave operation of distributed Bragg reflector quantum cascade lasers[J]. Applied Physics Letters, 104, 071109(2014).

    [45] LU Q Y, SLIVKEN S, WU D H et al. High power continuous wave operation of single mode quantum cascade lasers up to 5 W spanning λ~3.8-8.3 μm[J]. Optics Express, 28, 15181-15188(2020).

    [46] VURGAFTMAN I, MEYER J R. Photonic-crystal distributed-feedback lasers[J]. Applied Physics Letters, 78, 1475-1477(2001).

    [47] BAI Y, GOKDEN B, DARVISH S R et al. Photonic crystal distributed feedback quantum cascade lasers with 12 W output power[J]. Applied Physics Letters, 95, 031105(2009).

    [48] LU Q Y, ZHANG W, WANG L J et al. Holographic fabricated photonic-crystal distributed-feedback quantum cascade laser with near-diffraction-limited beam quality[J]. Optics Express, 17, 18900-18905(2009).

    [49] LU Q Y, GUO W H, ZHANG W et al. Room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers with single longitudinal and lateral mode performance[J]. Applied Physics Letters, 96, 051112(2010).

    [50] LUO G P, PENG C, LE H Q et al. Grating-tuned external-cavity quantum-cascade semiconductor lasers[J]. Applied Physics Letters, 78, 2834-2836(2001).

    [51] LUO G P, PENG C, LE H Q et al. Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers[J]. IEEE Journal of Quantum Electronics, 38, 486-494(2002).

    [52] MAULINI R, YAREKHA D A, BULLIARD J M et al. Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser[J]. Optics Letters, 30, 2584-2586(2005).

    [53] MOHAN A, WITTMANN A, HUGI A et al. Room-temperature continuous-wave operation of an external-cavity quantum cascade laser[J]. Optics Letters, 32, 2792-2794(2007).

    [54] CENTENO R, MARCHENKO D, MANDON J et al. High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection[J]. Applied Physics Letters, 105, 261907(2014).

    [55] SUN Y Q, YANG K, LIU J H et al. High sensitivity and fast detection system for sensing of explosives and hazardous materials[J]. Sensors and Actuators B-Chemical, 360, 131640(2022).

    [56] WITTMANN A, HUGI A, GINI E et al. Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning[J]. IEEE Journal of Quantum Electronics, 44, 1083-1088(2008).

    [57] LEE B G, BELKIN M A, PFLUGL C et al. DFB quantum cascade laser arrays[J]. IEEE Journal of Quantum Electronics, 45, 554-565(2009).

    [58] SLIVKEN S, BANDYOPADHYAY N, TSAO S et al. Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature[J]. Applied Physics Letters, 100, 261112(2012).

    [59] SLIVKEN S, BANDYOPADHYAY N, BAI Y et al. Extended electrical tuning of quantum cascade lasers with digital concatenated gratings[J]. Applied Physics Letters, 103, 231110(2013).

    [60] FUCHS P, SEUFERT J, KOETH J et al. Widely tunable quantum cascade lasers with coupled cavities for gas detection[J]. Applied Physics Letters, 97, 181111(2010).

    [61] MENG B, TAO J, HUI LI X et al. Tunable single-mode slot waveguide quantum cascade lasers[J]. Applied Physics Letters, 104, 201106(2014).

    [62] LI J H, SUN F Y, JIN Y H et al. Widely tunable single-mode slot waveguide quantum cascade laser array[J]. Optics Express, 30, 629-640(2022).

    [63] HANSCH T W. Nobel lecture: passion for precision[J]. Reviews of Modern Physics, 78, 1297-1309(2006).

    [64] DEL'HAYE P, SCHLIESSER A, ARCIZET O et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 450, 1214-1217(2007).

    [65] UDEM T, HOLZWARTH R, HANSCH T W. Optical frequency metrology[J]. Nature, 416, 233-237(2002).

    [66] SCHLIESSER A, PICQUE N, HANSCH T W. Mid-infrared frequency combs[J]. Nature Photonics, 6, 440-449(2012).

    [67] HUGI A, VILLARES G, BLASER S et al. Mid-infrared frequency comb based on a quantum cascade laser[J]. Nature, 492, 229-233(2012).

    [68] VILLARES G, HUGI A, BLASER S et al. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs[J]. Nature Communications, 5, 5192(2014).

    [69] VILLARES G, WOLF J, KAZAKOV D et al. On-chip dual-comb based on quantum cascade laser frequency combs[J]. Applied Physics Letters, 107, 251104(2015).

    [70] LU Q Y, WU D H, SLIVKEN S et al. High efficiency quantum cascade laser frequency comb[J]. Scientific Reports, 7, 43806(2017).

    [71] LU Q Y, WANG F H, WU D H et al. Room temperature terahertz semiconductor frequency comb[J]. Nature Communications, 10, 2403(2019).

    [72] JAIDL M, OPACAK N, KAINZ M A et al. Silicon integrated terahertz quantum cascade ring laser frequency comb[J]. Applied Physics Letters, 120, 091106(2022).

    [73] BRADLEY F, ZHANG X. Materials for terahertz science and technology[J]. Physics, 32, 286-293(2003).

    [74] ZHAO H, TAN Y, ZHANG R et al. Anion-water hydrogen bond vibration revealed by the terahertz Kerr effect[J]. Optics Letters, 46, 230-233(2021).

    [75] BERRY C W, WANG N, HASHEMI M R et al. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes[J]. Nature Communications, 4, 1622(2013).

    [76] KHALATPOUR A, PAULSEN A K, DEIMERT C et al. High-power portable terahertz laser systems[J]. Nature Photonics, 15, 16-20(2021).

    [77] BELKIN M A, CAPASSO F, BELYANIN A et al. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation[J]. Nature Photonics, 1, 288-292(2007).

    [78] LU Q Y, BANDYOPADHYAY N, SLIVKEN S et al. Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers[J]. Applied Physics Letters, 99, 131106(2011).

    [79] LU Q Y, BANDYOPADHYAY N, SLIVKEN S et al. Continuous operation of a monolithic semiconductor terahertz source at room temperature[J]. Applied Physics Letters, 104, 221105(2014).

    [80] LU Q Y, WU D H, SENGUPTA S et al. Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers[J]. Scientific Reports, 6, 23595(2016).

    [81] VIJAYRAGHAVAN K, ADAMS R W, VIZBARAS A et al. Terahertz sources based on Cerenkov difference-frequency generation in quantum cascade lasers[J]. Applied Physics Letters, 100, 251104(2012).

    [82] NAKANISHI A, FUJITA K, HORITA K et al. Terahertz imaging with room-temperature terahertz difference-frequency quantum-cascade laser sources[J]. Optics Express, 27, 1884-1893(2019).

    [83] SCHWARZ B, REININGER P, DETZ H et al. Monolithically integrated mid-infrared quantum cascade laser and detector[J]. Sensors, 13, 2196-2205(2013).

    [84] ZHOU W J, BANDYOPADHYAY N, WU D H et al. Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design[J]. Scientific Reports, 6, 25213(2016).

    [85] WANG R J, SPRENGEL S, BOEHM G et al. Broad wavelength coverage 2.3 μm III-V-on-silicon DFB laser array[J]. Optica, 4, 972-975(2017).

    [86] YOO K M, MIDKIFF J, ROSTAMIAN A et al. InGaAs membrane waveguide: a promising platform for monolithic integrated mid-infrared optical gas sensor[J]. Acs Sensors, 5, 861-869(2020).

    [87] HINKOV B, PILAT F, LUX L et al. A mid-infrared lab-on-a-chip for dynamic reaction monitoring[J]. Nature Communications, 13, 4753(2022).

    [88] GUO Q, ZHANG J, YANG K et al. Monolithically integrated mid-infrared sensor with a millimeter-scale sensing range[J]. Optics Express, 30, 40657-40665(2022).

    [89] PILAT F, SCHWARZ B, BAUMGARTNER B et al. Beyond Karl Fischer titration: a monolithic quantum cascade sensor for monitoring residual water concentration in solvents[J]. Lab Chip, 23, 1816-1824(2023).

    Tools

    Get Citation

    Copy Citation Text

    Binru ZHOU, Yu MA, Shichen ZHANG, Fengqi LIU, Quanyong LU. Recent Development of Quantum Cascade Lasers for On-chip Sensing(Invited)[J]. Acta Photonica Sinica, 2023, 52(10): 1052409

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 15, 2023

    Accepted: Sep. 19, 2023

    Published Online: Dec. 5, 2023

    The Author Email: Quanyong LU (luqy@baqis.ac.cn)

    DOI:10.3788/gzxb20235210.1052409

    Topics