Chinese Journal of Lasers, Volume. 50, Issue 6, 0612002(2023)

Precisely Reconstructing Phase Space Distribution of Different Chaotic Lasers Using Maximum Likelihood Method

Mengyu Xing1,2, Xiaomin Guo1,2, Haojie Zhang1,2, Jianchao Zhang1,2, and Yanqiang Guo1,2、*
Author Affiliations
  • 1Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • 2State Key Laboratory of Cryptology, Beijing 100878, China
  • show less
    References(52)

    [1] Argyris A, Syvridis D, Larger L et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 438, 343-346(2005).

    [2] Jiang N, Pan W, Yan L S et al. Chaos synchronization and communication in mutually coupled semiconductor lasers driven by a third laser[J]. Journal of Lightwave Technology, 28, 1978-1986(2010).

    [3] Soriano M C, García-Ojalvo J, Mirasso C R et al. Complex photonics: dynamics and applications of delay-coupled semiconductors lasers[J]. Reviews of Modern Physics, 85, 421-470(2013).

    [4] Sciamanna M, Shore K A. Physics and applications of laser diode chaos[J]. Nature Photonics, 9, 151-162(2015).

    [5] Kreinberg S, Porte X, Schicke D et al. Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels[J]. Nature Communications, 10, 1539(2019).

    [6] Yan S L. Chaotic laser parallel series synchronization and its repeater applications in secure communication[J]. Acta Physica Sinica, 68, 170502(2019).

    [7] Jiang L, Pan Y, Yi A L et al. Trading off security and practicability to explore high-speed and long-haul chaotic optical communication[J]. Optics Express, 29, 12750-12762(2021).

    [8] Uchida A, Amano K, Inoue M et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2, 728-732(2008).

    [9] Reidler I, Aviad Y, Rosenbluh M et al. Ultrahigh-speed random number generation based on a chaotic semiconductor laser[J]. Physical Review Letters, 103, 024102(2009).

    [10] Virte M, Mercier E, Thienpont H et al. Physical random bit generation from chaotic solitary laser diode[J]. Optics Express, 22, 17271-17280(2014).

    [11] Wang A B, Li P, Zhang J G et al. 4.5 Gbps high-speed real-time physical random bit generator[J]. Optics Express, 21, 20452-20462(2013).

    [12] Wang H N, Xiang S Y, Gong J K. Multi-user image encryption algorithm based on synchronized random bits generator in semiconductor lasers network[J]. Multimedia Tools and Applications, 78, 26181-26201(2019).

    [13] Gao H, Wang A B, Wang L S et al. 0.75 Gbit/s high-speed classical key distribution with mode-shift keying chaos synchronization of Fabry–Perot lasers[J]. Light: Science & Applications, 10, 172(2021).

    [14] Zhao Z X, Cheng M F, Luo C K et al. Semiconductor-laser-based hybrid chaos source and its application in secure key distribution[J]. Optics Letters, 44, 2605-2608(2019).

    [15] Lin F Y, Liu J M. Chaotic lidar[J]. IEEE Journal of Selected Topics in Quantum Electronics, 10, 991-997(2004).

    [16] Wang Y C, Wang B J, Wang A B. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 20, 1636-1638(2008).

    [17] Wang Y H, Zhang M J, Zhang J Z et al. Millimeter-level-spatial-resolution Brillouin optical correlation-domain analysis based on broadband chaotic laser[J]. Journal of Lightwave Technology, 37, 3706-3712(2019).

    [18] Yao T F, Zhu D, Ben D et al. Distributed MIMO chaotic radar based on wavelength-division multiplexing technology[J]. Optics Letters, 40, 1631-1634(2015).

    [19] Appeltant L, Soriano M C, van der Sande G et al. Information processing using a single dynamical node as complex system[J]. Nature Communications, 2, 468(2011).

    [20] Zhao Q C, Yin H X. Research progress of reservoir computing using chaotic laser[J]. Laser & Optoelectronics Progress, 50, 030003(2013).

    [21] Wu J G, Wu Z M, Xia G Q et al. Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system[J]. Optics Express, 20, 1741-1753(2012).

    [22] Li S S, Chan S C. Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 541-552(2015).

    [23] Zhong Z Q, Wu Z M, Xia G Q. Experimental investigation on the time-delay signature of chaotic output from a 1550  nm VCSEL subject to FBG feedback[J]. Photonics Research, 5, 6-10(2017).

    [24] Wang Y, Xiang S Y, Wang B et al. Time-delay signature concealment and physical random bits generation in mutually coupled semiconductor lasers with FBG filtered injection[J]. Optics Express, 27, 8446-8455(2019).

    [25] Guo Y Q, Liu T, Zhao T et al. Chaotic time-delay signature suppression and entropy growth enhancement using frequency-band extractor[J]. Entropy, 23, 516(2021).

    [26] Li N Q, Kim B, Locquet A et al. Statistics of the optical intensity of a chaotic external-cavity DFB laser[J]. Optics Letters, 39, 5949-5952(2014).

    [27] Hart J D, Terashima Y, Uchida A et al. Recommendations and illustrations for the evaluation of photonic random number generators[J]. APL Photonics, 2, 090901(2017).

    [28] Hong Y H, Ji S K. Effect of digital acquisition on the complexity of chaos[J]. Optics Letters, 42, 2507-2510(2017).

    [29] Xiang S Y, Wen A J, Pan W et al. Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays[J]. Journal of Lightwave Technology, 34, 4221-4227(2016).

    [30] Fang X, Gao Q Z, Zhang J J et al. Entropy enhancement of chaotic laser via quantum noise[J]. Chinese Journal of Lasers, 48, 2112001(2021).

    [31] Guo Y Q, Fang X, Zhang H J et al. Chaotic time-delay signature suppression using quantum noise[J]. Optics Letters, 46, 4888-4891(2021).

    [32] Guo X M, Liu T, Wang L J et al. Evaluating entropy rate of laser chaos and shot noise[J]. Optics Express, 28, 1238-1248(2020).

    [33] Ji Y L, Guo X M, Li P et al. Suppression of time-delay signature and enhancement of stochastic statistical properties of chaotic laser by filtering[J]. Chinese Journal of Lasers, 45, 1008001(2018).

    [34] Albert F, Hopfmann C, Reitzenstein S et al. Observing chaos for quantum-dot microlasers with external feedback[J]. Nature Communications, 2, 366(2011).

    [35] Lebreton A, Abram I, Braive R et al. Unequivocal differentiation of coherent and chaotic light through interferometric photon correlation measurements[J]. Physical Review Letters, 110, 163603(2013).

    [36] Lan D D, Guo X M, Peng C S et al. Photon number distribution and second-order degree of coherence of a chaotic laser: analysis and experimental investigation[J]. Acta Physica Sinica, 66, 120502(2017).

    [37] Guo Y Q, Peng C S, Ji Y L et al. Photon statistics and bunching of a chaotic semiconductor laser[J]. Optics Express, 26, 5991-6000(2018).

    [38] Guo Y Q, Wang L J, Wang Y et al. High-order photon correlations through double Hanbury Brown-Twiss measurements[J]. Journal of Optics, 22, 095202(2020).

    [39] Liu T, Guo X M, Zhang H J et al. Analysis and measurement of photon cross-correlation of chaotic laser[J]. Acta Optica Sinica, 41, 2414002(2021).

    [40] Fano U. Description of states in quantum mechanics by density matrix and operator techniques[J]. Reviews of Modern Physics, 29, 74-93(1957).

    [41] Vogel K, Risken H. Determination of quasi probability distributions in terms of probability distributions for the rotated quadrature phase[J]. Physical Review A, 40, 2847-2849(1989).

    [42] Smithey D T, Beck M, Raymer M G et al. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum[J]. Physical Review Letters, 70, 1244-1247(1993).

    [43] Lvovsky A I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography[J]. Journal of Optics B: Quantum and Semiclassical Optics, 6, S556-S559(2004).

    [44] Lvovsky A I, Raymer M G. Continuous-variable optical quantum-state tomography[J]. Reviews of Modern Physics, 81, 299-332(2009).

    [45] Ye C G, Zhang J. Generation of squeezed vacuum states by PPKTP crystal and its Wigner quasi-probability distribution function reconstruction[J]. Acta Physica Sinica, 57, 6962-6967(2008).

    [46] Breitenbach G, Schiller S, Mlynek J. Measurement of the quantum states of squeezed light[J]. Nature, 387, 471-475(1997).

    [47] Li Q H, Yao W X, Li F et al. Manipulations and quantum tomography of bright squeezed states[J]. Acta Physica Sinica, 70, 154203(2021).

    [48] Yang R G, Zhang J, Zhai S Q et al. Quantum resonstruction of Wigner quasiprobability distribution function of high order TEM01 squeezed states[J]. Chinese Journal of Lasers, 41, 0318001(2014).

    [49] Hacker B, Welte S, Daiss S et al. Deterministic creation of entangled atom–light Schrödinger-cat states[J]. Nature Photonics, 13, 110-115(2019).

    [50] Zhang N N, Li S J, Yan H M et al. Effect of imperfect experimental condition on generation of Schrodinger cat state[J]. Acta Physica Sinica, 67, 234203(2018).

    [51] Chrapkiewicz R, Jachura M, Banaszek K et al. Hologram of a single photon[J]. Nature Photonics, 10, 576-579(2016).

    [52] Deléglise S, Dotsenko I, Sayrin C et al. Reconstruction of non-classical cavity field states with snapshots of their decoherence[J]. Nature, 455, 510-514(2008).

    Tools

    Get Citation

    Copy Citation Text

    Mengyu Xing, Xiaomin Guo, Haojie Zhang, Jianchao Zhang, Yanqiang Guo. Precisely Reconstructing Phase Space Distribution of Different Chaotic Lasers Using Maximum Likelihood Method[J]. Chinese Journal of Lasers, 2023, 50(6): 0612002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: quantum optics

    Received: Apr. 18, 2022

    Accepted: Jun. 7, 2022

    Published Online: Mar. 6, 2023

    The Author Email: Guo Yanqiang (guoyanqiang@tyut.edu.cn)

    DOI:10.3788/CJL220768

    Topics