Chinese Journal of Lasers, Volume. 48, Issue 12, 1201002(2021)
Physical Limitations of High-Power, High-Energy Lasers
[2] Siders C W, Haefner C. High-power lasers for science and society[R]. Oak Ridge: Office of Scientific and Technical Information (OSTI)(2016).
[3] Haynam C A, Wegner P J, Auerbach J M et al. National ignition facility laser performance status[J]. Applied Optics, 46, 3276-3303(2007).
[4] Zhang X M, Wei X F. Review of new generation of huge-scale high peak power laser facility in China[J]. Chinese Journal of Lasers, 46, 0100003(2019).
[6] Wei Z Y, Zhong S Y, He X K et al. Progresses and trends in attosecond optics[J]. Chinese Journal of Lasers, 48, 0501001(2021).
[7] Dai C, Wang Y, Miao Z M et al. Generation and application of high-order harmonics based on interaction between femtosecond laser and matter[J]. Laser & Optoelectronics Progress, 58, 0300001(2021).
[8] Perry M D, Pennington D, Stuart B C et al. Petawatt laser pulses[J]. Optics Letters, 24, 160-162(1999).
[16] Kiriyama H, Nishiuchi M, Pirozhkov A S et al. J-KAREN-P laser facility at QST: high contrast, high intensity petawatt OPCPA/Ti∶sapphire hybrid laser system[C]. //2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 25-29, 2017, Munich, Germany(2017).
[18] Bromage J, Bahk S W, Begishev I A et al. Technology development for ultraintense all-OPCPA systems[J]. High Power Laser Science and Engineering, 7, 31-41(2019).
[19] Tajima T, Mourou G. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics[J]. Physical Review Special Topics - Accelerators and Beams, 5, 031301(2002).
[20] Liu Z J, Wang H Y, Xu X J. High energy diode pumped gas laser[J]. Chinese Journal of Lasers, 48, 0401001(2021).
[26] Injeyan H, Goodno G, Palese S. High power laser handbook[M](2011).
[27] Caird J, Agrawal V, Bayramian A et al. Nd∶glass laser design for laser ICF fission energy (LIFE)[J]. Fusion Science and Technology, 56, 607-617(2009).
[28] Siegman A E. Lasers[M]. Mill Valley: University Science Books(1986).
[31] Koechner W. Properties of solid-state laser materials[M]. //Koechner W. Solid-state laser engineering. Springer series in optical sciences, 1, 38-101(2006).
[34] Jing F. Studies on multi-pass amplification system[D](1998).
[35] Wang T. Numerical simulation and optimization design of multi pass laser amplification system[D](1999).
[36] Siegman A E. Defining, measuring, and optimizing laser beam quality[J]. Proceedings of SPIE, 1868, 2-12(1993).
[37] Hu D X. Studies on the wave-front correction techniques for high power solid lasers[D](2003).
[39] Su J Q, Jing F, Liu L Q et al. Research on PSD recovery algorithm and focusing characteristics of intense laser beam wavefront[C]. //The 15th China Laser Conference, September 20-24, 2001, Wuhan, China, 285-288(2001).
[41] Peng Z T, Jing F, Liu L Q et al. Power spectra density estimation of quality of the laser beam passing through an self-focusing media[J]. Acta Physica Sinica, 52, 87-90(2003).
[43] Spaeth M L, Manes K R, Widmayer C C et al. National ignition facility wavefront requirements and optical architecture[J]. Optical Engineering, 43, 25-42(2004).
[44] Hocquet S, Penninckx D, Bordenave E et al. FM-to-AM conversion in high-power lasers[J]. Applied Optics, 47, 3338-3349(2008).
[47] Veisz L. Contrast improvement of relativistic few-cycle light pulses[M]. //Duarte F J. Coherence and ultrashort pulse laser emission, 14, 305-328(2010).
[53] Wang J, Ma J G, Yuan P et al. Scattering-initiated parametric noise in optical parametric chirped-pulse amplification[J]. Optics Letters, 40, 3396-3399(2015).
[56] Didenko N V, Konyashchenko A V, Lutsenko A P et al. Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses[J]. Optics Express, 16, 3178-3190(2008).
[58] Trebino R, DeLong K W, Fittinghoff D N et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating[J]. Review of Scientific Instruments, 68, 3277-3295(1997).
[61] Nakamura K, Mao H S, Gonsalves A J et al. Diagnostics, control and performance parameters for the BELLA high repetition rate petawatt class laser[J]. IEEE Journal of Quantum Electronics, 53, 1-21(2017).
[64] Vetrovec J. Solid-state high-energy laser[J]. Proceedings of SPIE, 4632, 104-114(2002).
[65] Fan T Y, Ripin D J, Aggarwal R L et al. Cryogenic Yb 3+-doped solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 448-459(2007).
[67] Kim H, Hay R S, McDaniel S A et al. Lasing of surface-polished polycrystalline Ho∶YAG (yttrium aluminum garnet) fiber[J]. Optics Express, 25, 6725-6731(2017).
[68] Gao C, Dai J Y, Li F Y et al. Homemade 10-kW ytterbium-doped aluminophosphosilicate fiber for tandem pumping[J]. Chinese Journal of Lasers, 47, 0315001(2020).
[69] Sheng Q. In-band pumping of Nd-based all-solid-state lasers and its application in nonlinear optical frequency conversion technology[D](2013).
[70] Bowman S R. Lasers without internal heat generation[J]. IEEE Journal of Quantum Electronics, 35, 115-122(1999).
[72] Gao G B, Han L S. Study on thermal management of airborne laser weapon[J]. Aeronautical Manufacturing Technology, 61, 93-96(2018).
[76] Wang T. Study on fundamental and crucial technology about the heat sink unit of laser thermal management system based on microgrooves phase-change cooling[D], 2008.
[78] Wu J, Long X F. Research status and prospects for thermochemical energy storage[J]. Modern Chemical Industry, 34, 17-21, 23(2014).
[80] Feng Y Y, Qin M M, Feng W. High thermal conductivity carbon composites[C]. //the 14th National Annual Meeting of Applied Chemistry in 2015, July 21-24, 2015, Nanchang, China, 92-95(2015).
[81] Cui Y, Li M, Hu Y J. Emerging interface materials for electronics thermal management: experiments, modeling, and new opportunities[J]. Journal of Materials Chemistry C, 8, 10568-10586(2020).
[85] van Erp R, Soleimanzadeh R, Nela L et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 585, 211-216(2020).
[86] Oberly C E, Bash M, Razidlo B R et al. Integrated power and thermal management system (IPTMS) demonstration including preliminary results of rapid dynamic loading and load shedding at high power[J]. SAE International Journal of Aerospace, 8, 60-71(2015).
[87] Brown D C. High-peak-power Nd∶glass laser systems[M](1981).
[91] Xie L P, Zhao J L, Jing F. Theory of nonlinear hot-image formation in high-power lasers[J]. Proceedings of SPIE, 6028, 60281Z(2005).
[94] Manes K R, Spaeth M L, Adams J J et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 69, 146-249(2016).
[95] Robertson A. Laser damage mechanisms in fused fibre components[J]. Proceedings of SPIE, 5647, 557-558(2005).
[96] Wood R M. Laser-induced damage of optical materials[M](2003).
[97] Kozlowski M R, Chow R. Role of defects in laser damage of multilayer coatings[J]. Proceedings of SPIE, 2114, 640-649(1994).
[100] Cheng X B, Ding T, He W Y et al. Using engineered defects to study laser-induced damage in optical thin films with nanosecond pulses[J]. Proceedings of SPIE, 8190, 819002(2011).
[101] Ma H, Cheng X, Zhang J et al. Effect of boundary continuity on nanosecond laser damage of nodular defects in high-reflection coatings[J]. Optics Letters, 42, 478-481(2017).
[102] Cheng X B, Zhang J L, Ding T et al. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses[J]. Light: Science & Applications, 2, e80(2013).
[103] Cheng X B, Tuniyazi A, Wei Z Y et al. Physical insight toward electric field enhancement at nodular defects in optical coatings[J]. Optics Express, 23, 8609-8619(2015).
[104] Negres R A, Norton M A, Cross D A et al. Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation[J]. Optics Express, 18, 19966-19976(2010).
[105] Spaeth M L, Wegner P J, Suratwala T I et al. Optics recycle loop strategy for NIF operations above UV laser-induced damage threshold[J]. Fusion Science and Technology, 69, 265-294(2016).
[106] Bude J, Miller P E, Shen N et al. Silica laser damage mechanisms, precursors, and their mitigation[J]. Proceedings of SPIE, 9237, 92370S(2014).
Get Citation
Copy Citation Text
Xiaomin Zhang, Dongxia Hu, Dangpeng Xu, Jing Wang, Xinbin Chen, Jun Liu, Wei Han, Min Li, Mingzhong Li. Physical Limitations of High-Power, High-Energy Lasers[J]. Chinese Journal of Lasers, 2021, 48(12): 1201002
Category: laser devices and laser physics
Received: Mar. 23, 2021
Accepted: May. 8, 2021
Published Online: Jun. 11, 2021
The Author Email: Xiaomin Zhang (zhangxiaomin@caep.cn)