Chinese Journal of Liquid Crystals and Displays, Volume. 39, Issue 6, 844(2024)

Hyperspectral image classification based on multi-branch spatial-spectral feature enhancement

Tie LI, Wenxu LI*, Junguo WANG, and Qiaoyu GAO
Author Affiliations
  • School of Electronic and Information Engineering,Liaoning Technical University,Huludao 125105,China
  • show less
    Figures & Tables(19)
    Structure diagram of SSFE-MBACNN model network
    Structure of the multi-branch spatial feature extraction module
    Structure of the multi-branch spatial-spectral feature extraction module
    Structure of the attentional mechanism
    Structure of the improved multi-scale feature extraction and fusion module
    Structure of the spatial feature enhancement module
    Comparison of classification accuracy for different numbers of principal components
    Comparison of classification accuracy for different network structures
    Comparison of the number of parameters for different network structures
    Visualization results chart for different models on the IP dataset
    Visualization results chart for different models on the PU dataset
    Visualization results chart for different models on the SA dataset
    • Table 1. Classification accuracies of the model with different learning rates

      View table
      View in Article

      Table 1. Classification accuracies of the model with different learning rates

      学习率Indian PinesPavia UniversitySalinas
      OAAAKappaOAAAKappaOAAAKappa
      0.00398.6898.4898.4999.2498.4598.9999.0799.0698.96
      0.00199.0798.8598.9499.7599.7599.6799.4799.5899.41
      0.000 598.9598.4298.8199.6499.2999.5299.0299.2898.91
      0.000 398.4598.4298.2399.5499.2799.3999.0199.2198.91
      0.000 196.8894.7696.4498.6597.8998.2198.0198.5297.77
    • Table 2. Comparison results of different models on the IP dataset

      View table
      View in Article

      Table 2. Comparison results of different models on the IP dataset

      Class2D-CNNM3D-CNNRes-3D-CNNHybridSNMSPNMDAN3DA-FCNNSSFE-MBACNN
      Alfalfa59.4686.4967.5697.3097.3089.1997.3094.60
      Corn-n89.3794.3086.6096.7296.0297.9396.5498.19
      Corn-min81.5487.3583.1897.6295.0995.8396.4399.70
      Corn64.5895.3110096.8892.7196.8897.92100
      Grass-p97.7093.8888.7895.6695.4198.2199.4999.23
      Grass-t98.8199.3292.7299.6698.8299.3298.4899.66
      Grass-p-m95.4586.3668.18100100100100100
      Hay-w98.4499.7499.74100100100100100
      Oats25.0075.0075.0093.7510087.5093.75100
      Soybean-n83.2584.7790.3695.3098.2296.2096.4597.84
      Soybean-m87.0395.2797.1398.3999.4099.4599.6599.25
      Soybean-c91.4896.8898.7598.3498.7599.5898.7597.71
      Wheat99.4096.9910096.9910010095.7899.40
      Woods99.2299.2299.9099.3299.8199.2299.42100
      Buildings-g-t80.1392.6310010099.3699.68100100
      Stone-s-t98.6882.9089.4794.7496.0597.3793.4296.05
      OA89.5594.2393.6597.9098.1098.4598.3299.07
      AA84.3591.6589.8397.5497.9398.2398.0898.94
      Kappa88.0893.4092.7597.6197.8397.2797.7198.85
    • Table 3. Comparison results of different models on the PU dataset

      View table
      View in Article

      Table 3. Comparison results of different models on the PU dataset

      Class2D-CNNM3D-CNNRes-3D-CNNHybridSNMSPNMDAN3DA-FCNNSSFE-MBACNN
      Asphalt98.4099.1098.6699.6599.5898.8599.3299.55
      Meadows98.7599.5199.6010099.8799.9910099.99
      Gravel86.2787.2891.4599.5898.8999.5899.6899.63
      Trees96.9296.9696.9395.4497.9499.0296.8598.73
      Painted metal sheets10010099.5910010099.8410099.75
      Bare soil95.7999.0398.11100100100100100
      Bitumen94.9190.7594.5098.9299.9297.58100100
      Self-Blocking Bricks94.6794.8885.5098.8099.5898.0796.2199.28
      Shadows98.2580.2399.1894.8597.7897.5494.62100
      OA97.1697.5297.3199.3599.5999.4399.2199.75
      AA96.0094.1995.9598.5899.2898.9498.5299.66
      Kappa96.2496.7196.4299.1399.4599.2498.9599.67
    • Table 4. Comparison results of different models on the SA dataset

      View table
      View in Article

      Table 4. Comparison results of different models on the SA dataset

      Class2D-CNNM3D-CNNRes-3D-CNNHybridSNMSPNMDAN3DA-FCNNSSFE-MBACNN
      Broccoli green weeds 110098.7310099.3910099.9010099.85
      Broccoli green weeds 299.97100100100100100100100
      Fallow99.0798.5510010010010097.47100
      Fallow rough plow99.1990.9289.3999.8599.0599.8599.3499.27
      Fallow smooth97.9097.2298.7499.5496.7298.6795.2898.25
      Stubble10010010099.7910099.9210099.92
      Celery99.9199.9799.5499.4010010097.6999.97
      Grapes untrained89.4287.2793.6098.8598.4399.9499.2599.15
      Soy vineyard develop10099.7499.8210010099.8410099.93
      Corn senesced green-w93.2297.8598.3598.9497.7099.8199.8898.10
      Lettuce romaine 4wk88.5396.5699.0588.9110098.7699.14100
      Lettuce romaine 5wk10094.8199.6810010097.3098.8999.79
      Lettuce romaine 6wk10086.1968.6010099.78100100100
      Lettuce romaine 7wk96.0996.0998.8599.4210099.1499.33100
      Vineyard untrained75.5884.0490.2097.0395.9695.3798.5199.30
      Vineyard vertical trellis96.5096.9598.1910099.1010010099.66
      OA93.5293.9196.2298.9798.7799.1299.0799.47
      AA95.9695.3195.8898.8299.1799.2899.0599.57
      Kappa92.7893.2295.7998.8498.6399.0298.9799.41
    • Table 5. Classification performance of SSFE-MBACNN with different training ratios on the IP dataset

      View table
      View in Article

      Table 5. Classification performance of SSFE-MBACNN with different training ratios on the IP dataset

      RateOAAAKappa
      392.3992.3491.35
      596.4896.6795.98
      797.6396.3397.26
      998.7098.7598.51
      1099.0798.8598.94
    • Table 6. Classification performance of SSFE-MBACNN with different training ratios on the PU dataset

      View table
      View in Article

      Table 6. Classification performance of SSFE-MBACNN with different training ratios on the PU dataset

      RateOAAAKappa
      198.3296.7697.78
      298.8997.8098.53
      399.2798.6999.03
      499.6699.2399.55
      599.7599.6699.67
    • Table 7. Classification performance of SSFE-MBACNN with different training ratios on the SA dataset

      View table
      View in Article

      Table 7. Classification performance of SSFE-MBACNN with different training ratios on the SA dataset

      RateOAAAKappa
      1.099.4799.5799.41
      1.599.5599.5799.51
      2.099.6899.7099.64
      2.599.7999.8399.76
      3.099.8699.8499.83
    Tools

    Get Citation

    Copy Citation Text

    Tie LI, Wenxu LI, Junguo WANG, Qiaoyu GAO. Hyperspectral image classification based on multi-branch spatial-spectral feature enhancement[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(6): 844

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 28, 2023

    Accepted: --

    Published Online: Jul. 30, 2024

    The Author Email: Wenxu LI (q1024099536@163.com)

    DOI:10.37188/CJLCD.2023-0158

    Topics