Optics and Precision Engineering, Volume. 31, Issue 15, 2248(2023)
Rapid fabrication of patterned Cu micro-nano structure by laser ablation in liquid
[1] LEO LIU T, KIM C J C J. Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids[J]. Science, 346, 1096-1100(2014).
[2] DAVIDS P S, KIRSCH J, STARBUCK A et al. Electrical power generation from moderate-temperature radiative thermal sources[J]. Science, 367, 1341-1345(2020).
[3] HU C Q, LIU J, WANG J B et al. New design for highly durable infrared-reflective coatings[J]. Light, 7, 17175(2018).
[4] CHOI S, ZHAO Z, ZUO J W et al. Structural color printing via polymer-assisted photochemical deposition[J]. Light, 11, 84(2022).
[5] YAMAGUCHI S, OHDAIRA K. Degradation behavior of crystalline silicon solar cells in a cell-level potential-induced degradation test[J]. Solar Energy, 155, 739-744(2017).
[6] KIM M, KIM T. Cracking-assisted photolithography for mixed-scale patterning and nanofluidic applications[J]. Nature Communications, 6, 6247(2015).
[7] GEINTS Y E, MININ I V, MININ O V. Talbot photolithography optimization with engineered hybrid metal-dielectric mask: high-contrast and highly-uniform Talbot stripes[J]. Optics & Laser Technology, 148, 107776(2022).
[8] SHEN L D, FAN M Z, QIU M B et al. Superhydrophobic nickel coating fabricated by scanning electrodeposition[J]. Applied Surface Science, 483, 706-712(2019).
[9] WANG Z W, SHEN L D, JIANG W et al. Superhydrophobic nickel coatings fabricated by scanning electrodeposition on stainless steel formed by selective laser melting[J]. Surface and Coatings Technology, 377, 124886(2019).
[10] ZHENG J W, YANG J C, CAO W et al. Fabrication of transparent wear-resistant superhydrophobic SiO2 film via phase separation and chemical vapor deposition methods[J]. Ceramics International, 48, 32143-32151(2022).
[11] FU J G, SUN Y H et al. Fabrication of robust ceramic based superhydrophobic coating on aluminum substrate via plasma electrolytic oxidation and chemical vapor deposition methods[J]. Journal of Materials Processing Technology, 306, 117641(2022).
[12] LLOYD R, ABDOLVAND A, SCHMIDT M et al. Laser-assisted generation of self-assembled microstructures on stainless steel[J]. Applied Physics A, 93, 117-122(2008).
[13] LI J R, XU J K, LIAN Z X et al. Fabrication of antireflection surfaces with superhydrophobic property for titanium alloy by nanosecond laser irradiation[J]. Optics & Laser Technology, 126, 106129(2020).
[14] RAJAB F H, LIU Z, LI L. Long term superhydrophobic and hybrid superhydrophobic/superhydrophilic surfaces produced by laser surface micro/nano surface structuring[J]. Applied Surface Science, 466, 808-821(2019).
[15] SAMANTA A, HUANG W J, CHAUDHRY H et al. Design of chemical surface treatment for laser-textured metal alloys to achieve extreme wetting behavior[J]. ACS Applied Materials & Interfaces, 12, 18032-18045(2020).
[16] [16] 16陈绒, 陈钊杰, 谢晋. 微孔气流加压对ITO玻璃激光刻蚀平面度的影响[J]. 光学 精密工程, 2022, 30(13): 1564-1571. doi: 10.37188/OPE.20223013.1564CHENR, CHENZH J, XIEJ. Influence of micropore airflow pressurization on flatness of laser etched ITO glass[J]. Optics and Precision Engineering, 2022, 30(13): 1564-1571. (in Chinese). doi: 10.37188/OPE.20223013.1564
[17] [17] 17葛声宏, 申继文, 曾永彬.安全滤网阵列网孔激光-电解组合加工[J]. 光学 精密工程, 2023, 31(12): 1774-1784. doi: 10.37188/OPE.20233112.1774GESH H, SHENJ W, ZENGY B. Laser-electrochemical combined machining for micro-hole arrays of safety filter[J]. Optics and Precision Engineering, 2023, 31(12): 1774-1784.(in Chinese). doi: 10.37188/OPE.20233112.1774
[18] WANG H P, GUAN Y C, ZHENG H Y et al. Controllable fabrication of metallic micro/nano hybrid structuring surface for antireflection by picosecond laser direct writing[J]. Applied Surface Science, 471, 347-354(2019).
[19] SU Y, WANG S Q, YAO D W et al. Stand-off fabrication of irregularly shaped, multi-functional hydrophobic and antireflective metal surfaces using femtosecond laser filaments in air[J]. Applied Surface Science, 494, 1007-1012(2019).
[20] YAN T Y, JI L F, HONG M H. Backside wet etching of sapphire substrate by laser-induced carbothermal reduction[J]. Optics & Laser Technology, 149, 107900(2022).
[21] ARVI K. Underwater and water-assisted laser processing: part 1—general features, steam cleaning and shock processing[J]. Optics and Lasers in Engineering, 41, 307-327(2004).
[22] YU M M, WENG Z K, HU J et al. Laser interference additive manufacturing ordered Cu microstructure[J]. Applied Surface Science, 615, 156312(2023).
[23] ZHANG D S, GOKCE B, SOMMER S et al. Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol[J]. Applied Surface Science, 367, 222-230(2016).
[24] YU M M, WENG Z K, HU J et al. A Non-enzymatic glucose sensor via uniform copper nanosphere fabricated by two-step method[J]. Optics & Laser Technology, 144, 107430(2021).
[25] HAN J H, LI Y G, FAN W X et al.
[26] LIANG L, YUAN J D, LIN G Z. Effect of the scanning speed on the microgroove formation regime in nanosecond-pulsed laser scanning ablation of cermet[J]. The International Journal of Advanced Manufacturing Technology, 107, 97-107(2020).
[27] XU Z M, ZHANG Z Y, SUN Q et al. Effects of nanosecond-pulsed laser milling on the surface properties of Al2O3 ceramics[J]. Coatings, 12, 1687(2022).
[28] ZHANG Z, ZHANG Q L, WANG Q W et al. Surface microstructuring of single crystalline diamond based on the accumulated energy homogenization in the nanosecond pulsed laser ablation[J]. Optics & Laser Technology, 138, 106839(2021).
[29] ZHANG D S, SUGIOKA K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids[J]. Opto-Electronic Advances, 2, 19000201-19000218(2019).
[30] YANG H, XU K C, XU C W et al. Femtosecond laser fabricated elastomeric superhydrophobic surface with stretching-enhanced water repellency[J]. Nanoscale Research Letters, 14, 1-10(2019).
[31] LIU X Q, BAI B F, CHEN Q D et al. Etching-assisted femtosecond laser modification of hard materials[J]. Opto-Electronic Advances, 2, 19002101-19002114(2019).
[32] YANG J F, LONG F, WANG R Y et al. Design of mechanical robust superhydrophobic Cu coatings with excellent corrosion resistance and self-cleaning performance inspired by lotus leaf[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627, 127154(2021).
[33] RYU S W, CHOO S, CHOI H J et al. Replication of rose petal surfaces using a nickel electroforming process and UV nanoimprint lithography[J]. Applied Surface Science, 322, 57-63(2014).
[34] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 28, 988-994(1936).
[35] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 40, 546(1944).
[36] FENG L, ZHANG Y N, XI J M et al. Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir, 24, 4114-4119(2008).
[37] EBERT D, BHUSHAN B. Wear-resistant rose petal-effect surfaces with superhydrophobicity and high droplet adhesion using hydrophobic and hydrophilic nanoparticles[J]. Journal of Colloid and Interface Science, 384, 182-188(2012).
[38] MU H B, WANG Y N, TIAN Y Q et al. Microstructure and hydrophobic properties of nano-Cu-coated wood-based composites by ultrasonic pretreatment[J]. Applied Sciences, 10, 5448(2020).
[39] LI J, ZHOU Y J, WANG W B et al. Superhydrophobic copper surface textured by laser for delayed icing phenomenon[J]. Langmuir, 36, 1075-1082(2020).
[40] SHEN X D, ZOU B S, HUANG C W et al. Femtosecond laser and oscillation induced large-scale periodic micro/nanostructures on copper surfaces[J]. Optics & Laser Technology, 161, 109166(2023).
[41] WANG D, HU C S, GU J et al. Bamboo surface coated with polymethylsilsesquioxane/Cu-containing nanoparticles (PMS/CuNP) xerogel for superhydrophobic and anti-mildew performance[J]. Journal of Wood Science, 66, 1-8(2020).
[42] DONG Z L, SUN X Y, KONG D J et al. Spatial light modulated femtosecond laser ablated durable superhydrophobic copper mesh for oil-water separation and self-cleaning[J]. Surface and Coatings Technology, 402, 126254(2020).
[43] TONG J W, LIU S S, PENG R T et al. Development of a micro/nano composite super-hydrophobic silicon surface with nail-shaped texture/dual self-assembly monolayers and its wetting behavior[J]. Applied Surface Science, 544, 148803(2021).
Get Citation
Copy Citation Text
Miaomiao YU, Zhankun WENG, Guanqun WANG, Chuanchuan GUO, Junting HU, Zuobin WANG. Rapid fabrication of patterned Cu micro-nano structure by laser ablation in liquid[J]. Optics and Precision Engineering, 2023, 31(15): 2248
Category: Micro/Nano Technology and Fine Mechanics
Received: May. 26, 2023
Accepted: --
Published Online: Sep. 5, 2023
The Author Email: Zhankun WENG (wengzk@fosu.edu.cn)