Chinese Journal of Lasers, Volume. 51, Issue 7, 0701004(2024)

Advances in High-Order Harmonic Generation from Laser-Produced Low-Density Plasmas

Jian Gao1,2、* and Jian Wu1,2
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
  • 2Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401121, China
  • show less
    References(119)

    [1] Zhou L R, Ni H C, Jiang Z J et al. Ultrafast formation dynamics of D3+ from the light-driven bimolecular reaction of the D2‒D2 dimer[J]. Nature Chemistry, 15, 1229-1235(2023).

    [2] Li H, Gong X C, Ni H C et al. Light-induced ultrafast molecular dynamics: from photochemistry to optochemistry[J]. The Journal of Physical Chemistry Letters, 13, 5881-5893(2022).

    [3] Pan S Z, Zhang W B, Li H et al. Clocking dissociative above-threshold double ionization of H2 in a multicycle laser pulse[J]. Physical Review Letters, 126, 063201(2021).

    [4] Hargrove L E, Fork R L, Pollack M A. Locking of He-Ne laser modes induced by synchronous intracavity modulation[J]. Applied Physics Letters, 5, 4-5(1964).

    [5] Mocker H W, Collins R J. Mode competition and self-locking effects in a Q-switched ruby laser[J]. Applied Physics Letters, 7, 270-273(1965).

    [6] Zewail A H. Laser femtochemistry[J]. Science, 242, 1645-1653(1988).

    [7] Zewail A H. Femtochemistry: atomic-scale dynamics of the chemical bond[J]. The Journal of Physical Chemistry A, 104, 5660-5694(2000).

    [8] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).

    [9] Pessot M, Maine P, Mourou G. 1000 times expansion/compression of optical pulses for chirped pulse amplification[J]. Optics Communications, 62, 419-421(1987).

    [10] McPherson A, Gibson G, Jara H et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases[J]. Journal of the Optical Society of America B, 4, 595-601(1987).

    [11] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 71, 1994-1997(1993).

    [12] Hentschel M, Kienberger R, Spielmann C et al. Attosecond metrology[J]. Nature, 414, 509-513(2001).

    [13] Drescher M, Hentschel M, Kienberger R et al. Time-resolved atomic inner-shell spectroscopy[J]. Nature, 419, 803-807(2002).

    [14] Uiberacker M, Uphues T, Schultze M et al. Attosecond real-time observation of electron tunnelling in atoms[J]. Nature, 446, 627-632(2007).

    [15] Sandberg R L, Paul A, Raymondson D A et al. Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams[J]. Physical Review Letters, 99, 098103(2007).

    [16] Ravasio A, Gauthier D, Maia F R N C et al. Single-shot diffractive imaging with a table-top femtosecond soft X-ray laser-harmonics source[J]. Physical Review Letters, 103, 028104(2009).

    [17] Ferré A, Handschin C, Dumergue M et al. A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments[J]. Nature Photonics, 9, 93-98(2015).

    [18] Agostini P, Fabre F, Mainfray G et al. Free-free transitions following six-photon ionization of xenon atoms[J]. Physical Review Letters, 42, 1127-1130(1979).

    [19] Paul P M, Toma E S, Breger P et al. Observation of a train of attosecond pulses from high harmonic generation[J]. Science, 292, 1689-1692(2001).

    [20] Mairesse Y, de Bohan A, Frasinski L J et al. Attosecond synchronization of high-harmonic soft X-rays[J]. Science, 302, 1540-1543(2003).

    [21] Brabec T, Krausz F. Intense few-cycle laser fields: frontiers of nonlinear optics[J]. Reviews of Modern Physics, 72, 545-591(2000).

    [22] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 81, 163-234(2009).

    [23] Baltuška A, Udem T, Uiberacker M et al. Attosecond control of electronic processes by intense light fields[J]. Nature, 421, 611-615(2003).

    [24] Ferray M, L'Huillier A, Li X F et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases[J]. Journal of Physics B: Atomic Molecular Physics, 21, L31-L35(1988).

    [25] Lewenstein M, Balcou P, Ivanov M Y et al. Theory of high-harmonic generation by low-frequency laser fields[J]. Physical Review A, 49, 2117-2132(1994).

    [26] Isinger M, Squibb R J, Busto D et al. Photoionization in the time and frequency domain[J]. Science, 358, 893-896(2017).

    [27] Christov I P, Murnane M M, Kapteyn H C. High-harmonic generation of attosecond pulses in the "single-cycle" regime[J]. Physical Review Letters, 78, 1251-1254(1997).

    [28] Kienberger R, Goulielmakis E, Uiberacker M et al. Atomic transient recorder[J]. Nature, 427, 817-821(2004).

    [29] Kim I J, Kim C M, Kim H T et al. Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field[J]. Physical Review Letters, 94, 243901(2005).

    [30] Rykovanov S G, Geissler M, Meyer-ter-Vehn J et al. Intense single attosecond pulses from surface harmonics using the polarization gating technique[J]. New Journal of Physics, 10, 025025(2008).

    [31] Takahashi E J, Lan P F, Mücke O D et al. Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse[J]. Physical Review Letters, 104, 233901(2010).

    [32] Chang Z H. Single attosecond pulse and XUV supercontinuum in the high-order harmonic plateau[J]. Physical Review A, 70, 043802(2004).

    [33] Hammond T J, Brown G G, Kim K T et al. Attosecond pulses measured from the attosecond lighthouse[J]. Nature Photonics, 10, 171-175(2016).

    [34] Zhang C M, Vampa G, Villeneuve D M et al. Attosecond lighthouse driven by sub-two-cycle, 1.8 μm laser pulses[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 061001(2015).

    [35] Popmintchev T, Chen M C, Popmintchev D et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 336, 1287-1291(2012).

    [36] Gaumnitz T, Jain A, Pertot Y et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 25, 27506-27518(2017).

    [37] Zeng A W, Bian X B. Impact of statistical fluctuations on high harmonic generation in liquids[J]. Physical Review Letters, 124, 203901(2020).

    [38] Chen J X, Bian X B. Theoretical analysis of high-order harmonic generation in liquids by a semiclassical method[J]. Physical Review A, 107, 043111(2023).

    [39] Zhao X L, Bai L H, Bai Y et al. High-harmonic spectral shift of water under two-color laser fields[J]. Acta Optica Sinica, 43, 1326002(2023).

    [40] Ghimire S, DiChiara A D, Sistrunk E et al. Observation of high-order harmonic generation in a bulk crystal[J]. Nature Physics, 7, 138-141(2011).

    [41] Ghimire S, Reis D A. High-harmonic generation from solids[J]. Nature Physics, 15, 10-16(2019).

    [42] Ganeev R A. High-order harmonic generation in a laser plasma: a review of recent achievements[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 40, R213-R253(2007).

    [43] Ganeev R A[M]. High-order harmonic generation in laser plasma plumes(2013).

    [44] Gao J, Li B Y, Liu F et al. Double optimal density gradients for harmonic generation from relativistically oscillating plasma surfaces[J]. Physics of Plasmas, 26, 103102(2019).

    [45] Gao J, Li B Y, Liu F et al. Divergence control of relativistic harmonics by an optically shaped plasma surface[J]. Physical Review E, 101, 033202(2020).

    [46] Gao J, Liu F, Ge X L et al. Influence of laser contrast on high-order harmonic generation from solid-density plasma surfaces[J]. Chinese Optics Letters, 15, 081902(2017).

    [47] Luu T T, Scagnoli V, Saha S et al. Generation of coherent extreme ultraviolet radiation from α-quartz using 50 fs laser pulses at a 1030 nm wavelength and high repetition rates[J]. Optics Letters, 43, 1790-1793(2018).

    [48] Han S, Kim H, Kim Y W et al. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure[J]. Nature Communications, 7, 13105(2016).

    [49] Imasaka K, Kaji T, Shimura T et al. Antenna-enhanced high harmonic generation in a wide-bandgap semiconductor ZnO[J]. Optics Express, 26, 21364-21374(2018).

    [50] Vampa G, Ghamsari B G, Siadat Mousavi S et al. Plasmon-enhanced high-harmonic generation from silicon[J]. Nature Physics, 13, 659-662(2017).

    [51] Vampa G, Hammond T J, Thiré N et al. All-optical reconstruction of crystal band structure[J]. Physical Review Letters, 115, 193603(2015).

    [52] Luu T T, Garg M, Kruchinin S Y et al. Extreme ultraviolet high-harmonic spectroscopy of solids[J]. Nature, 521, 498-502(2015).

    [53] Gordienko S, Pukhov A, Shorokhov O et al. Coherent focusing of high harmonics: a new way towards the extreme intensities[J]. Physical Review Letters, 94, 103903(2005).

    [54] Gold D M. Direct measurement of prepulse suppression by use of a plasma shutter[J]. Optics Letters, 19, 2006-2008(1994).

    [55] Ge X L, Yuan X H, Fang Y et al. Pulse shape of ultrashort intense laser reflected from a plasma mirror[J]. Chinese Optics Letters, 16, 103202(2018).

    [56] Schupp R, Torretti F, Meijer R A et al. Efficient generation of extreme ultraviolet light from Nd∶YAG-driven microdroplet-tin plasma[J]. Physical Review Applied, 12, 014010(2019).

    [57] Torretti F, Sheil J, Schupp R et al. Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography[J]. Nature Communications, 11, 2334(2020).

    [58] Lin N, Yang W H, Chen Y Y et al. Research progress and development trend of extreme ultraviolet lithography source[J]. Laser & Optoelectronics Progress, 59, 0922002(2022).

    [59] Suzuki M, Baba M, Ganeev R et al. Anomalous enhancement of a single high-order harmonic by using a laser-ablation tin plume at 47 nm[J]. Optics Letters, 31, 3306-3308(2006).

    [60] Elouga Bom L B, Ganeev R A, Abdul-Hadi J et al. Intense multimicrojoule high-order harmonics generated from neutral atoms of In2O3 nanoparticles[J]. Applied Physics Letters, 94, 111108(2009).

    [61] Ganeev R A, Bom L B E, Kieffer J C et al. Systematic investigation of resonance-induced single-harmonic enhancement in the extreme-ultraviolet range[J]. Physical Review A, 75, 063806(2007).

    [62] Liang J G, Lai Y H, Fu W F et al. Observation of resonance-enhanced high-order harmonics from direct excitation of metal nanoparticles with femtosecond pulses[J]. Physical Review A, 102, 053117(2020).

    [63] Ganeev R A, Strelkov V V, Hutchison C et al. Experimental and theoretical studies of two-color-pump resonance-induced enhancement of odd and even harmonics from a tin plasma[J]. Physical Review A, 85, 023832(2012).

    [64] Khokhlova M A, Emelin M Y, Ryabikin M Y et al. Polarization control of quasimonochromatic XUV light produced via resonant high-order harmonic generation[J]. Physical Review A, 103, 043114(2021).

    [65] Strelkov V. Role of autoionizing state in resonant high-order harmonic generation and attosecond pulse production[J]. Physical Review Letters, 104, 123901(2010).

    [66] Ganeev R A, Suzuki M, Baba M et al. Strong resonance enhancement of a single harmonic generated in the extreme ultraviolet range[J]. Optics Letters, 31, 1699-1701(2006).

    [67] Rosenthal N, Marcus G. Discriminating between the role of phase matching and that of the single-atom response in resonance plasma-plume high-order harmonic generation[J]. Physical Review Letters, 115, 133901(2015).

    [68] Ganeev R A, Witting T, Hutchison C et al. Comparative studies of resonance enhancement of harmonic radiation in indium plasma using multicycle and few-cycle pulses[J]. Physical Review A, 88, 033838(2013).

    [69] Kulagin I A, Kim V V, Usmanov T. Compensation for phase mismatch of high harmonics by the group-velocity mismatch[J]. Quantum Electronics, 41, 801-803(2011).

    [70] Singh M, Fareed M A, Birulia V et al. Ultrafast resonant state formation by the coupling of Rydberg and dark autoionizing states[J]. Physical Review Letters, 130, 073201(2023).

    [71] Kim V V, Boltaev G S, Iqbal M et al. Resonance enhancement of harmonics in the vicinity of 32 nm spectral range during propagation of femtosecond pulses through the molybdenum plasma[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 195401(2020).

    [72] Ganeev R A. Controlling single harmonic enhancement in laser-produced plasmas[J]. Journal of Applied Physics, 121, 133108(2017).

    [73] Konda S R, Lai Y H, Li W. Investigation of high harmonic generation from laser ablated plumes of silver[J]. Journal of Applied Physics, 130, 013101(2021).

    [74] Ganeev R A, Baba M, Suzuki M et al. Optimization of harmonic generation from boron plasma[J]. Journal of Applied Physics, 99, 113303(2006).

    [75] Kim V V, Ivanov D S, Ganeev R A et al. Aluminum nanoparticle plasma formation for high-order harmonic generation[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 52, 245601(2019).

    [76] Mathijssen J, Mazzotta Z, Heinzerling A M et al. Material-specific high-order harmonic generation in laser-produced plasmas for varying plasma dynamics[J]. Applied Physics B, 129, 91(2023).

    [77] Ganeev R, Suzuki M, Baba M et al. High-order harmonic generation from boron plasma in the extreme-ultraviolet range[J]. Optics Letters, 30, 768-770(2005).

    [78] Ganeev R A, Bom L B E, Kieffer J C et al. Demonstration of the 101st harmonic generated from a laser-produced manganese plasma[J]. Physical Review A, 76, 023831(2007).

    [79] Ishifuji M, Mitsuishi M, Miyashita T. Enhanced optical second harmonic generation in hybrid polymer nanoassemblies based on coupled surface plasmon resonance of a gold nanoparticle array[J]. Applied Physics Letters, 89, 011903(2006).

    [80] Liu T M, Tai S P, Yu C H et al. Measuring plasmon-resonance enhanced third-harmonic χ(3) of Ag nanoparticles[J]. Applied Physics Letters, 89, 043122(2006).

    [81] Park I Y, Kim S, Choi J et al. Plasmonic generation of ultrashort extreme-ultraviolet light pulses[J]. Nature Photonics, 5, 677-681(2011).

    [82] Sun F H, Li H, Song S S et al. Single-shot imaging of surface molecular ionization in nanosystems[J]. Nanophotonics, 10, 2651-2660(2021).

    [83] Wang J W, Qu Q W, Sun F H et al. Surface molecular ionization imaging of gold nanocubes[J]. Optics Express, 31, 9678-9687(2023).

    [84] Zherebtsov S, Fennel T, Plenge J et al. Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields[J]. Nature Physics, 7, 656-662(2011).

    [85] Astruc D. Introduction: nanoparticles in catalysis[J]. Chemical Reviews, 120, 461-463(2020).

    [86] Yatsui T, Yamaguchi M, Nobusada K. Nano-scale chemical reactions based on non-uniform optical near-fields and their applications[J]. Progress in Quantum Electronics, 55, 166-194(2017).

    [87] Lukianova-Hleb E Y, Ren X Y, Zasadzinski J A et al. Plasmonic nanobubbles enhance efficacy and selectivity of chemotherapy against drug-resistant cancer cells[J]. Advanced Materials, 24, 3831-3837(2012).

    [88] Liu Y N, Ye H H, Huynh H D et al. Digital plasmonic nanobubble detection for rapid and ultrasensitive virus diagnostics[J]. Nature Communications, 13, 1687(2022).

    [89] Englert L, Wollenhaupt M, Haag L et al. Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale[J]. Applied Physics A, 92, 749-753(2008).

    [90] Ahmmed K M T, Grambow C, Kietzig A M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining[J]. Micromachines, 5, 1219-1253(2014).

    [91] Ganeev R A, Suzuki M, Yoneya S et al. Resonance-enhanced harmonic generation in nanoparticle-containing plasmas[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 165401(2015).

    [92] Ganeev R A, Bom L B E, Ozaki T. Application of nanoparticle-containing laser plasmas for optical harmonic generation[J]. Journal of Applied Physics, 106, 023104(2009).

    [93] Singhal H, Ganeev R A, Naik P A et al. Study of high-order harmonic generation from nanoparticles[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 43, 025603(2010).

    [94] Venkatesh M, Ganeev R A, Ivanov D S et al. High-order harmonic generation in Au nanoparticle-contained plasmas[J]. Nanomaterials, 10, 234(2020).

    [95] Ganeev R A, Suzuki M, Kuroda H. High-order harmonic generation in Ag, Sn, fullerene, and graphene nanoparticle-contained plasmas using two-color mid-infrared pulses[J]. The European Physical Journal D, 70, 21(2016).

    [96] Wöstmann M, Redkin P V, Zheng J A et al. High-order harmonic generation in plasmas from nanoparticle and mixed metal targets at 1-kHz repetition rate[J]. Applied Physics B, 120, 17-24(2015).

    [97] Ganeev R A, Boltaev G S, Satlikov N K et al. Harmonic generation of picosecond Nd∶YAG laser radiation in ablation-produced plasmas[J]. Journal of Optics, 14, 095202(2012).

    [98] Ganeev R A, Suzuki M, Baba M et al. High-order harmonic generation from laser plasma produced by pulses of different duration[J]. Physical Review A, 76, 023805(2007).

    [99] Ganeev R A[M]. Resonance enhancement in laser-produced plasmas: concepts and applications(2018).

    [100] Liang J G, Lai Y H, Fu W F et al. Distinguishing monomer and nanoparticle contributions to high-harmonic emission from laser-ablated plumes[J]. Optics Express, 29, 23421-23429(2021).

    [101] Venkatesh M, Ganeev R A, Kim V V et al. Application of vector beams for enhanced high-order harmonics generation in laser-induced plasmas[J]. Optics Express, 30, 17080-17093(2022).

    [102] Singh M, Fareed M A, Laramée A et al. Intense vortex high-order harmonics generated from laser-ablated plume[J]. Applied Physics Letters, 115, 231105(2019).

    [103] Ganeev R A, Chakera J A, Naik P A et al. Resonance enhancement of single even harmonic of laser radiation in tin-containing plasma using intensity variation of two-color pump[J]. Journal of the Optical Society of America B, 28, 1055-1061(2011).

    [104] Boltaev G S, Ganeev R A, Strelkov V V et al. Resonance-enhanced harmonics in mixed laser-produced plasmas[J]. Plasma Research Express, 1, 035002(2019).

    [105] Ganeev R A, Boltaev G S, Kim V V et al. Comparison studies of high-order harmonic generation in argon gas and different laser-produced plasmas[J]. OSA Continuum, 2, 2381-2390(2019).

    [106] Wöstmann M, Splitthoff L, Zacharias H. Control of quasi-phase-matching of high-harmonics in a spatially structured plasma[J]. Optics Express, 26, 14524-14537(2018).

    [107] Ganeev R A, Toşa V, Kovács K et al. Influence of ablated and tunneled electrons on quasi-phase-matched high-order-harmonic generation in laser-produced plasma[J]. Physical Review A, 91, 043823(2015).

    [108] Cao W, Lu P X, Lan P F et al. Control of the launch of attosecond pulses[J]. Physical Review A, 75, 063423(2007).

    [109] Fu W F, Wang J, Yu J Q et al. Extension of high-order harmonic generation cutoff from laser-ablated tin plasma plumes[J]. Optics Express, 31, 15553-15563(2023).

    [110] Frolov M V, Manakov N L, Starace A F. Wavelength scaling of high-harmonic yield: threshold phenomena and bound state symmetry dependence[J]. Physical Review Letters, 100, 173001(2008).

    [111] Huang B, Babcock H, Zhuang X W. Breaking the diffraction barrier: super-resolution imaging of cells[J]. Cell, 143, 1047-1058(2010).

    [112] Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 5, 343-348(2011).

    [113] Willner A E, Huang H, Yan Y et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 7, 66-106(2015).

    [114] Guclu C, Veysi M, Capolino F. Photoinduced magnetic nanoprobe excited by an azimuthally polarized vector beam[J]. ACS Photonics, 3, 2049-2058(2016).

    [115] Kraus M, Ahmed M A, Michalowski A et al. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization[J]. Optics Express, 18, 22305-22313(2010).

    [116] Hutchison C, Ganeev R A, Witting T et al. Stable generation of high-order harmonics of femtosecond laser radiation from laser produced plasma plumes at 1 kHz pulse repetition rate[J]. Optics Letters, 37, 2064-2066(2012).

    [117] Boltaev G S, Ganeev R A, Kim V V et al. High-order harmonics generation in the plasmas produced on different rotating targets during ablation using 1 kHz and 100 kHz lasers[J]. Optics Express, 28, 18859-18875(2020).

    [118] Ganeev R A, Witting T, Hutchison C et al. Isolated sub-fs XUV pulse generation in Mn plasma ablation[J]. Optics Express, 20, 25239-25248(2012).

    [119] Elouga Bom L B, Haessler S, Gobert O et al. Attosecond emission from chromium plasma[J]. Optics Express, 19, 3677-3685(2011).

    Tools

    Get Citation

    Copy Citation Text

    Jian Gao, Jian Wu. Advances in High-Order Harmonic Generation from Laser-Produced Low-Density Plasmas[J]. Chinese Journal of Lasers, 2024, 51(7): 0701004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Dec. 19, 2023

    Accepted: Feb. 2, 2024

    Published Online: Mar. 29, 2024

    The Author Email: Gao Jian (jgao@lps.ecnu.edu.cn)

    DOI:10.3788/CJL231546

    CSTR:32183.14.CJL231546

    Topics