Optoelectronics Letters, Volume. 21, Issue 7, 385(2025)

Enhanced photoelectrochemical performance of TiO2/Sb2S3 nanorod arrays by annealing in Ar ambience

Meirong SUI and Xiuquan GU
References(22)

[1] [1] LIU J L, LUO Z Y, MAO X C, et al. Recent advances in self-supported semiconductor heterojunction nanoarrays as efficient photoanodes for photoelectrochemical water splitting[J]. Small, 2022, 18(48): 2204553.

[2] [2] TANG R, ZHOU S J, ZHANG Z Y, et al. Engineering nanostructure-interface of photoanode materials toward photoelectrochemical water oxidation[J]. Advanced materials, 2021, 33(17): 2005389.

[3] [3] WEI S, XIA X W, BI S, et al. Metal-insulator-semiconductor photoelectrodes for enhanced photoelectrochemical water splitting[J]. Chemical society reviews, 2024, 53(13): 6860-6916.

[4] [4] JENNINGS J R, GHICOV A, PETER L M, et al. Dye sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons[J]. Journal of the American chemical society, 2008, 130(40): 13364-13372.

[5] [5] ALMOMANI F, SHAWAQFAH M, ALKASRAWI M. Solar-driven hydrogen production from a water-splitting cycle based on carbon-TiO2 nano-tubes[J]. International journal of hydrogen energy, 2022, 47(5): 3294-3305.

[6] [6] BRAIEK Z, NACEUR J B, JRAD F, et al. Novel synthesis of graphene oxide/In2S3/TiO2 NRs heterojunction photoanode for enhanced photoelectrochemical (PEC) performance[J]. International journal of hydrogen energy, 2022, 47(6): 3655-3666.

[7] [7] ZHANG S, GU X Q, ZHAO Y L, et al. Enhanced photoelectrochemical performance of TiO2 nanorod arrays by a 500°C annealing in air: insights into the mechanism[J]. Journal of electronic materials, 2016, 45(1): 648-653.

[8] [8] SUI M R, GU X Q, SHI M L, et al. Improved photoelectrochemical performance by forming a ZnO/ZnS core/shell nanorod array[J]. Optoelectronics letters, 2019, 15(4): 241-244.

[9] [9] TONG M H, WANG T M, LIN S W, et al. Ultra-thin carbon doped TiO2 nanotube arrays for enhanced visible-light photoelectrochemical water splitting[J]. Applied surface science, 2023, 623: 156980.

[10] [10] CHACON J A, CERDN-PASARN A, ZARAA I, et al. Anodized TiO2 nanotubes sensitized with selenium doped CdS nanoparticles for solar water splitting[J]. Energies, 2024, 17(7): 1592.

[11] [11] CELEBI N, AYDIN M Y, SOYSAL F, et al. Ligand-free fabrication of Au/TiO2 nanostructures for plasmonic hot-electron-driven photocatalysis: photoelectrochemical water splitting and organic-dye degredation[J]. Journal of alloys and compound, 2021, 860: 157908.

[12] [12] HE R, ZHAO Y L, GU X Q, et al. Enhanced visible-light photoelectrochemical activity of TiO2 nanorod arrays decorated by Sb2S3 particles[J]. Journal of materials science: materials in electronics, 2018, 29(7): 5293-5298.

[13] [13] SHARMA V, DAKSHINAMURTHY A C, PANDEY B, et al. Highly efficient photoelectrochemical ZnO and TiO2 nanorod/Sb2S3 heterostructured photoanodes through one step thermolysis of Sb-MPA complex[J]. Solar energy, 2021, 225: 333-343.

[14] [14] HAN F, MA S, LI D, et al. A simple fabrication of Sb2S3/TiO2 photoanode with long wavelength visible light absorption for efficient photoelectrochemical water oxidation[J]. Nanomaterials, 2022, 12(9): 3444.

[15] [15] ELBAKKAY M H, EL ROUBY W M A, MARIO-LOPEZ A, et al. One-pot synthesis of TiO2/Sb2S3/RGO complex multicomponent heterostructures for highly enhanced photoelectrochemical water splitting[J]. International journal of hydrogen energy, 2021, 46(61): 31216-31227.

[16] [16] WU S J, OU K, ZHANG W T, et al. TiO2 nanorod arrays/Ti3C2Tx MXene nanosheet composites with efficient photocatalytic activity[J]. Nanotechnology, 2024, 35(15): 155705.

[17] [17] ZHANG J, LIU Z, LIU Z. Novel WO3/Sb2S3 heterojunction photocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting[J]. ACS applied materials & interfaces, 2016, 8(15): 9684-9691.

[18] [18] FUTAKO W, KAMIYA T, FORTMANN C M, et al. The structure of 1.5–2.0 eV band gap amorphous silicon films prepared by chemical annealing[J]. Journal of non-crystalline solids, 2000, 266-269 (Part 1): 630-634.

[19] [19] PRASAD U, PRAKASH J, GUPTA S K, et al. Enhanced photoelectrochemical water splitting with Er-and W-codoped bismuth vanadate with WO3 heterojunction-based two-dimensional photoelectrode[J]. ACS applied materials & interfaces, 2019, 11(21): 19029-19039.

[20] [20] MARUSKA H P, GHOSH A K. Photocatalytic decomposition of water at semiconductor electrodes[J]. Solar energy, 1978, 20(6): 443-458.

[21] [21] LEE E J, PYUN S II. Analysis of nonlinear Mott-Schottky plots obtained from anodically passivating amorphous and polycrystalline TiO2 films[J]. Journal of applied electrochemistry, 1992, 22(2): 156-160.

[22] [22] PYUN S II, KIM C H. Determination of donor concentration in anodically passivating polycrystalline TiO2 films from analysis of nonlinear Mott-Schottky plots[J]. International journal of hydrogen energy, 1991, 16(10): 661-664.

Tools

Get Citation

Copy Citation Text

SUI Meirong, GU Xiuquan. Enhanced photoelectrochemical performance of TiO2/Sb2S3 nanorod arrays by annealing in Ar ambience[J]. Optoelectronics Letters, 2025, 21(7): 385

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Received: Feb. 5, 2024

Accepted: Jul. 24, 2025

Published Online: Jul. 24, 2025

The Author Email:

DOI:10.1007/s11801-025-4039-3

Topics