Chinese Journal of Liquid Crystals and Displays, Volume. 40, Issue 3, 505(2025)

Dense pedestrian detection algorithm based on YOLOv7 with optimized weights

Jie CAO1,2、*, Yu NIU1, and Haopeng LIANG3
Author Affiliations
  • 1College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730030, China
  • 2College of Information Engineering, Lanzhou City University, Lanzhou 730020, China
  • 3School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
  • show less
    Figures & Tables(10)
    Overall network structure of proposed algorithm
    Efficient multi-scale attention module
    ELCM module
    SimAM attention module
    Comparison of loss functions
    Comparison between the YOLOv7 algorithm (a) and the algorithm in this paper (b)
    • Table 1. Ablation experiment results on Wider-Person dataset

      View table
      View in Article

      Table 1. Ablation experiment results on Wider-Person dataset

      算法评价指标
      PRmAPParams/M
      YOLOv70.8050.7860.79837.19
      YOLOv7+EMA0.8110.7980.80637.19
      YOLOv7+SimAM0.8090.8000.80537.19
      YOLOv7+EMA+SimAM0.8160.8050.81237.19
      YOLOv7+ELCM0.8250.8110.81631.49
      YOLOv7+Focal-SIoU0.8160.7990.80637.19
      YOLOv7+ELCM+EMA+Focal-SIoU0.8420.8150.83731.49
    • Table 2. Comparison of the effects of SPPCSPC and ELCM modules

      View table
      View in Article

      Table 2. Comparison of the effects of SPPCSPC and ELCM modules

      模块mAP@0.5参数量/M时间/s
      SPPCSPC0.79837.19270
      ELCM0.81631.49220
    • Table 3. Comparison of different algorithms on the Wider Person dataset

      View table
      View in Article

      Table 3. Comparison of different algorithms on the Wider Person dataset

      算法评价指标
      mAPParams/M
      SSD0.57426.16
      Faster-RCNN0.615137.08
      EfficientNet0.6943.87
      DETR0.49841.17
      RetinaNet0.70436.78
      YOLOv5s0.6987.01
      YOLOv70.79837.19
      YOLOv8s0.77211.14
      YOLOv9s0.7819.74
      YOLOv10s0.7688.07
      本文算法0.83731.49
    • Table 4. Comparison of different algorithms on the Crowd Human dataset

      View table
      View in Article

      Table 4. Comparison of different algorithms on the Crowd Human dataset

      算法评价指标
      mAPParams/M
      SSD0.67926.16
      Faster-RCNN0.802137.08
      EfficientNet0.7263.87
      DETR0.50441.17
      RetinaNet0.72136.78
      YOLOv5s0.7677.01
      YOLOv70.78537.19
      YOLOv8s0.76511.14
      YOLOv9s0.7729.74
      YOLOv10s0.7538.07
      本文算法0.82631.49
    Tools

    Get Citation

    Copy Citation Text

    Jie CAO, Yu NIU, Haopeng LIANG. Dense pedestrian detection algorithm based on YOLOv7 with optimized weights[J]. Chinese Journal of Liquid Crystals and Displays, 2025, 40(3): 505

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 17, 2024

    Accepted: --

    Published Online: Apr. 27, 2025

    The Author Email: Jie CAO (haop1115@163.com)

    DOI:10.37188/CJLCD.2024-0175

    Topics