Laser & Optoelectronics Progress, Volume. 62, Issue 18, 1817022(2025)
Deep Learning-Based Resolution Enhancement Method for NIR-II Fluorescence Imaging (Invited)
[1] Feng Z, Tang T, Wu T X et al. Perfecting and extending the near-infrared imaging window[J]. Light: Science & Applications, 10, 197(2021).
[3] Cai Z C, Zhu L, Wang M Q et al. NIR-Ⅱ fluorescence microscopic imaging of cortical vasculature in non-human primates[J]. Theranostics, 10, 4265-4276(2020).
[4] Zhu S J, Yang Q L, Antaris A L et al. Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 962-967(2017).
[5] Zhou J, Wu T X, Chen R Z et al. Self-confocal NIR-Ⅱ fluorescence microscopy for multifunctional in vivo imaging[J]. Journal of Innovative Optical Health Sciences, 17, 2350025(2024).
[9] Dip F, Boni L, Bouvet M et al. Consensus conference statement on the general use of near-infrared fluorescence imaging and indocyanine green guided surgery: results of a modified Delphi study[J]. Annals of Surgery, 275, 685-691(2022).
[10] Wang X Y, Teh C S C, Ishizawa T et al. Consensus guidelines for the use of fluorescence imaging in hepatobiliary surgery[J]. Annals of Surgery, 274, 97-106(2021).
[11] Chen Z H, Wang X H, Yang M Z et al. An extended NIR-Ⅱ superior imaging window from 1500 to 1900 nm for high-resolution in vivo multiplexed imaging based on lanthanide nanocrystals[J]. Angewandte Chemie (International Edition), 62, e202311883(2023).
[12] Chang Y L, Chen H R, Xie X Y et al. Bright Tm3+-based downshifting luminescence nanoprobe operating around 1800 nm for NIR-Ⅱb and c bioimaging[J]. Nature Communications, 14, 1079(2023).
[13] Wang F F, Ren F Q, Ma Z R et al. In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors[J]. Nature Nanotechnology, 17, 653-660(2022).
[14] Zhang Y H, Peng S Y, Guo J et al. High-definition, video-rate triple-channel NIR-Ⅱ imaging using shadowless lamp excitation and illumination[J]. ACS Nano, 19, 1743-1756(2025).
[16] Chen R Z, Peng S Y, Zhu L et al. Enhancing total optical throughput of microscopy with deep learning for intravital observation[J]. Small Methods, 7, e2300172(2023).
[18] Ma Y Z, Zhou W T, Ma R et al. DOVE: doodled vessel enhancement for photoacoustic angiography super resolution[J]. Medical Image Analysis, 94, 103106(2024).
[19] Ma Z R, Wang F F, Wang W Z et al. Deep learning for in vivo near-infrared imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2021446118(2021).
[21] Lazzarini P A, Pacella R E, Armstrong D G et al. Diabetes-related lower-extremity complications are a leading cause of the global burden of disability[J]. Diabetic Medicine, 35, 1297-1299(2018).
[22] Venermo M, Settembre N, Albäck A et al. Pilot assessment of the repeatability of indocyanine green fluorescence imaging and correlation with traditional foot perfusion assessments[J]. European Journal of Vascular and Endovascular Surgery, 52, 527-533(2016).
[23] Fan X X, Yang J, Ni H W et al. Initial experience of NIR-Ⅱ fluorescence imaging-guided surgery in foot and ankle surgery[J]. Engineering, 40, 19-27(2024).
Get Citation
Copy Citation Text
Shiyi Peng, Yuhuang Zhang, Xiaolong Liu, Xiaoxiao Fan, Hui Lin, Jun Qian. Deep Learning-Based Resolution Enhancement Method for NIR-II Fluorescence Imaging (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(18): 1817022
Category: Medical Optics and Biotechnology
Received: May. 13, 2025
Accepted: Jun. 17, 2025
Published Online: Sep. 9, 2025
The Author Email: Jun Qian (qianjun@zju.edu.cn)
CSTR:32186.14.LOP251220