Journal of Inorganic Materials, Volume. 40, Issue 5, 449(2025)
[2] IELO I, CALABRESE G, DE LUCA G et al. Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics[J]. International Journal of Molecular Sciences(2022).
[3] YANG S B, LI Y S. Fluorescent hybrid silica nanoparticles and their biomedical applications[J]. WIREs Nanomedicine and Nanobiotechnology(2020).
[4] ARCOS D, VALLET-REGÍ M. Substituted hydroxyapatite coatings of bone implants[J]. Journal of Materials Chemistry B(2020).
[5] WU C T, CHANG J. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors[J]. Journal of Controlled Release(2014).
[7] VALLET-REGÍ M, COLILLA M, IZQUIERDO-BARBA I et al. Mesoporous silica nanoparticles for drug delivery: current insights[J]. Molecules(2018).
[8] CHEN F, GOEL S, VALDOVINOS H F et al.
[9] CHEN L, DENG C J, LI J Y et al. 3D printing of a lithium- calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction[J]. Biomaterials(2019).
[10] WANG X Y, ZHANG M, MA J G et al. 3D printing of cell-container-like scaffolds for multicell tissue engineering[J]. Engineering(2020).
[11] TANG Z R, LI X F, TAN Y F et al. The material and biological characteristics of osteoinductive calcium phosphate ceramics[J]. Regenerative Biomaterials(2018).
[12] WANG Y J. Bioadaptability: an innovative concept for biomaterials[J]. Journal of Materials Science & Technology(2016).
[13] LI Y L, XIAO Y, LIU C S. The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering[J]. Chemical Reviews(2017).
[14] ELIAZ N, METOKI N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications[J]. Materials(2017).
[15] CHEN R, WANG J, LIU C S. Biomaterials act as enhancers of growth factors in bone regeneration[J]. Advanced Functional Materials(2016).
[16] NIU H Y, MA Y F, WU G Y et al. Multicellularity-interweaved bone regeneration of BMP-2-loaded scaffold with orchestrated kinetics of resorption and osteogenesis[J]. Biomaterials(2019).
[17] DAI K, GENG Z, ZHANG W C et al. Biomaterial design for regenerating aged bone: materiobiological advances and paradigmatic shifts[J]. National Science Review(2024).
[19] WANG Y, XIE F R, HE Z R et al. Senescence-targeted and NAD+-dependent SIRT1-activated nanoplatform to counteract stem cell senescence for promoting aged bone regeneration[J]. Small(2024).
[20] HE Z R, SUN C H, MA Y F et al. Rejuvenating aged bone repair through multihierarchy reactive oxygen species-regulated hydrogel[J]. Advanced Materials(2024).
[21] ZHENG J Q, LU X, LU Y J et al. Functional bioadaptability in medical bioceramics: biological mechanism and application[J]. Journal of Inorganic Materials(2024).
[22] LIU X, MIAO Y L, LIANG H F et al. 3D-printed bioactive ceramic scaffolds with biomimetic micro/nano-HAp surfaces mediated cell fate and promoted bone augmentation of the bone-implant interface
[23] LU Q J, DIAO J J, WANG Y Q et al. 3D printed pore morphology mediates bone marrow stem cell behaviors
[25] ZHANG M, QIN C, WANG Y F et al. 3D printing of tree-like scaffolds for innervated bone regeneration[J]. Additive Manufacturing(2022).
[26] ZHANG H J, ZHANG M, ZHAI D et al. Polyhedron-like biomaterials for innervated and vascularized bone regeneration[J]. Advanced Materials(2023).
[27] ZHANG H J, QIN C, ZHANG M et al. Calcium silicate nanowires-containing multicellular bioinks for 3D bioprinting of neural-bone constructs[J]. Nano Today(2022).
[28] ZHANG H J, MA W P, MA H S et al. Spindle-like zinc silicate nanoparticles accelerating innervated and vascularized skin burn wound healing[J]. Advanced Healthcare Materials(2022).
[29] ZHANG H J, QIN C, SHI Z et al. Bioprinting of inorganic- biomaterial/neural-stem-cell constructs for multiple tissue regeneration and functional recovery[J]. National Science Review(2024).
[30] TANG L, ZHANG A N, ZHANG Z Y et al. Multifunctional inorganic nanomaterials for cancer photoimmunotherapy[J]. Cancer Communications(2022).
[31] WANG X W, ZHONG X Y, LI J X et al. Inorganic nanomaterials with rapid clearance for biomedical applications[J]. Chemical Society Reviews(2021).
[32] SONG G S, HAO J L, LIANG C et al. Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform[J]. Angewandte Chemie International Edition, 2122(2016).
[33] YANG Y, WU H, LIU B et al. Tumor microenvironment- responsive dynamic inorganic nanoassemblies for cancer imaging and treatment[J]. Advanced Drug Delivery Reviews(2021).
[34] ZHANG A M, XIAO Z S, LIU Q F et al. CaCO3-encapuslated microspheres for enhanced transhepatic arterial embolization treatment of hepatocellular carcinoma[J]. Advanced Healthcare Materials(2021).
[35] WANG D, ZHANG L, YANG W H et al. Arginine-loaded nano-calcium-phosphate-stabilized lipiodol pickering emulsions potentiates transarterial embolization-immunotherapy[J]. Advanced Science(2024).
[36] LI Q F, CHAO Y, LIU B et al. Disulfiram loaded calcium phosphate nanoparticles for enhanced cancer immunotherapy[J]. Biomaterials(2022).
[37] GONG F, XU J C, LIU B et al. Nanoscale CaH2 materials for synergistic hydrogen-immune cancer therapy[J]. Chem(2022).
[38] YANG N L, GONG F, LIU B et al. Magnesium galvanic cells produce hydrogen and modulate the tumor microenvironment to inhibit cancer growth[J]. Nature Communications(2022).
[39] DONG X L, SUN Y, LI Y Y et al. Synergistic combination of bioactive hydroxyapatite nanoparticles and the chemotherapeutic doxorubicin to overcome tumor multidrug resistance[J]. Small(2021).
[40] DONG X L, ZANG C Y, SUN Y et al. Hydroxyapatite nanoparticles induced calcium overload-initiated cancer cell-specific apoptosis through inhibition of PMCA and activation of calpain[J]. Journal of Materials Chemistry B(2023).
[41] MA X Y, CHEN Y Y, QIAN J C et al. Controllable synthesis of spherical hydroxyapatite nanoparticles using inverse microemulsion method[J]. Materials Chemistry and Physics(2016).
[42] SHEN T, WANG H, ZHANG S Q et al. Safe, simple and multifunctional hydroxyapatite nanoparticles for efficient overcoming of tumor multidrug resistance[J]. Applied Materials Today(2024).
[43] SUN Y, CHEN Y Y, MA X Y et al. Mitochondria-targeted hydroxyapatite nanoparticles for selective growth inhibition of lung cancer
[44] CHEN S Y, XING Z Y, GENG M Y et al. Macrophage fusion event as one prerequisite for inorganic nanoparticle-induced antitumor response[J]. Science Advances(2023).
[45] WANG R Q, HUA Y C, WU H F et al. Hydroxyapatite nanoparticles promote TLR4 agonist-mediated anti-tumor immunity through synergically enhanced macrophage polarization[J]. Acta Biomaterialia(2023).
[46] ZHAO H, WU C H, GAO D et al. Antitumor effect by hydroxyapatite nanospheres: activation of mitochondria dependent apoptosis and negative regulation of phosphatidylinositol-3- kinase/protein kinase B pathway[J]. ACS Nano(2018).
[47] LUTHER D C, HUANG R, JEON T et al. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles[J]. Advanced Drug Delivery Reviews(2020).
[48] ANSELMO A C, MITRAGOTRI S. A review of clinical translation of inorganic nanoparticles[J]. AAPS Journal(2015).
[49] LI X L, JIANG C, JIA X L et al. Dual "unlocking" strategy to overcome inefficient nanomedicine delivery and tumor hypoxia for enhanced photodynamic-immunotherapy[J]. Advanced Healthcare Materials(2023).
[50] NIU D C, LIU Z J, LI Y S et al. Monodispersed and ordered large-pore mesoporous silica nanospheres with tunable pore structure for magnetic functionalization and gene delivery[J]. Advanced Materials(2014).
[51] SHEN L Y, PAN S, NIU D C et al. Facile synthesis of organosilica- capped mesoporous silica nanocarriers with selective redox- triggered drug release properties for safe tumor chemotherapy[J]. Biomaterials Science(2019).
[52] QIU Y W, LUO Y J, QIN Y C et al. Efficient synthesis of multi-responsive MSN sensitive to ROS, pH and temperature with significant anticancer effects[J]. Materials Letters(2024).
[53] LIU H M, DU Y Y, ST-PIERRE J P et al. Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state[J]. Science Advances(2020).
[54] LIU X L, JIANG S T, JIANG T et al. Bioenergetic-active exosomes for cartilage regeneration and homeostasis maintenance[J]. Science Advances(2024).
Get Citation
Copy Citation Text
Xi CHEN, Yuan YUAN, Yeqiang TAN, Changsheng LIU.
Category:
Received: Jan. 6, 2025
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Yeqiang TAN (tanyq@nsfc.gov.cn), Changsheng LIU (liucs@ecust.edu.cn)