Acta Optica Sinica, Volume. 44, Issue 7, 0720001(2024)
Progressive Training Scheme for Recognition Error of Optical Neural Networks
[1] Luan H T, Chen X, Zhang Q M et al. Artificial intelligence nanophotonics: optical neural networks and nanophotonics[J]. Acta Optica Sinica, 41, 0823005(2021).
[2] Guo P X, Liu Z Y, Hou W G et al. Photonic convolutional neural network accelerator assisted by phase change material[J]. Acta Optica Sinica, 43, 0415001(2023).
[3] Cheng J W, Zhou H L, Dong J J. Photonic matrix computing: from fundamentals to applications[J]. Nanomaterials, 11, 1683(2021).
[4] Guo P X, Zhou N J, Hou W G et al. StarLight: a photonic neural network accelerator featuring a hybrid mode-wavelength division multiplexing and photonic nonvolatile memory[J]. Optics Express, 30, 37051-37065(2022).
[5] Fu T Z, Sun R, Huang Y Y et al. Review of on-chip integrated optical neural networks[J]. Chinese Journal of Lasers, 51, 0119002(2024).
[6] Wei M L, Li J Y, Chen Z Q et al. Electrically programmable phase-change photonic memory for optical neural networks with nanoseconds in situ training capability[J]. Advanced Photonics, 5, 046004(2023).
[7] Shen Y C, Harris N C, Skirlo S et al. Deep learning with coherent nanophotonic circuits[J]. Nature Photonics, 11, 441-446(2017).
[8] Zhang H, Gu M, Jiang X D et al. An optical neural chip for implementing complex-valued neural network[J]. Nature Communications, 12, 457(2021).
[9] Zhu Y, Zhang G L, Li B et al. Countering variations and thermal effects for accurate optical neural networks[C], 152(2020).
[10] Pai S, Bartlett B, Solgaard O et al. Matrix optimization on universal unitary photonic devices[J]. Physical Review Applied, 11, 064044(2019).
[11] Shokraneh F, Geoffroy-Gagnon S, Liboiron-Ladouceur O. The diamond mesh, a phase-error- and loss-tolerant field-programmable MZI-based optical processor for optical neural networks[J]. Optics Express, 28, 23495-23508(2020).
[12] Bandyopadhyay S, Hamerly R, Englund D. Hardware error correction for programmable photonics[J]. Optica, 8, 1247-1255(2021).
[13] Shao R, Zhang G, Gong X. Generalized robust training scheme using genetic algorithm for optical neural networks with imprecise components[J]. Photonics Research, 10, 1868-1876(2022).
[14] Hughes T W, Minkov M, Shi Y et al. Training of photonic neural networks through in situ backpropagation[J]. Optica, 5, 864-871(2018).
[15] Clements W R, Humphreys P C, Metcalf B J et al. Optimal design for universal multiport interferometers[J]. Optica, 3, 1460-1465(2016).
[16] Lin X, Rivenson Y, Yardimci N T et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 361, 1004-1008(2018).
[17] Reck M, Zeilinger A, Bernstein H J et al. Experimental realization of any discrete unitary operator[J]. Physical Review Letters, 73, 58-61(1994).
[18] Shokraneh F, Nezami M S, Liboiron-Ladouceur O. Theoretical and experimental analysis of a 4×4 reconfigurable MZI-based linear optical processor[J]. Journal of Lightwave Technology, 38, 1258-1267(2020).
[21] Hughes T, Veronis G, Wootton K P et al. Method for computationally efficient design of dielectric laser accelerator structures[J]. Optics Express, 25, 15414-15427(2017).
[22] Deng H Q, Khajavikhan M. Parity-time symmetric optical neural networks[J]. Optica, 8, 1328-1333(2021).
Get Citation
Copy Citation Text
Pengxing Guo, Zhengrong You, Weigang Hou, Lei Guo. Progressive Training Scheme for Recognition Error of Optical Neural Networks[J]. Acta Optica Sinica, 2024, 44(7): 0720001
Category: Optics in Computing
Received: Dec. 19, 2023
Accepted: Jan. 25, 2024
Published Online: Apr. 11, 2024
The Author Email: Weigang Hou (houwg@cqupt.edu.cn)
CSTR:32393.14.AOS231949