Acta Photonica Sinica, Volume. 53, Issue 8, 0810004(2024)

A Dual Branch Edge Convolution Fusion Network for Infrared and Visible Images

Hongde ZHANG, Xin FENG*, Jieming YANG, and Guohang QIU
Author Affiliations
  • School of Mechanical Engineering, Chongqing Key Laboratory of Green Design and Manufacturing of Intelligent Equipment, Chongqing Technology and Business University, Chongqing 400067, China
  • show less
    References(24)

    [1] SUN Changqi, ZHANG Cong, XIONG Naixue. Infrared and visible image fusion techniques based on deep learning: a review[J]. Electronics, 9, 2162(2020).

    [2] LIU Yu, LIU Shuping, WANG Zengfu. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 24, 147-164(2015).

    [3] MA Jiayi, CHEN Chen, LI Chang et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 31, 100-109(2016).

    [4] HUANG Gao, LIU Zhuang, VAN DER MAATEN L et al. Densely connected convolutional networks[C], 4700-4708(2017).

    [5] LI Hui, WU Xiaojun. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 28, 2614-2623(2018).

    [6] MA Jiayi, YU Wei, LIANG Pengwei et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 48, 11-26(2019).

    [7] XU Han, MA Jiayi, JIANG Junjun et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 502-518(2020).

    [8] ZHANG Yu, LIU Yu, SUN Peng et al. IFCNN: a general image fusion framework based on convolutional neural network[J]. Information Fusion, 54, 99-118(2020).

    [9] ZHANG Hao, MA Jiayi. SDNet: a versatile squeeze-and-decomposition network for real-time image fusion[J]. International Journal of Computer Vision, 129, 2761-2785(2021).

    [10] LI Hui, WU Xiaojun, DURRANI Tariq. NestFuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models[J]. IEEE Transactions on Instrumentation and Measurement, 69, 9645-9656(2020).

    [11] TANG Linfeng, YUAN Jiteng, ZHANG Hao et al. PIAFusion: a progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 83, 79-92(2022).

    [12] TANG Linfeng, YUAN Jiteng, MA Jiayi. Image fusion in the loop of high-level vision tasks: a semantic-aware real-time infrared and visible image fusion network[J]. Information Fusion, 82, 28-42(2022).

    [13] WANG Zhishe, CHEN Yanlin, SHAO Wenyu et al. SwinFuse: a residual swin transformer fusion network for infrared and visible images[J]. IEEE Transactions on Instrumentation and Measurement, 71, 1-12(2022).

    [14] LIU Ze, LIN Yutong, CAO Yue et al. Swin transformer: hierarchical vision transformer using shifted windows[C], 10012-10022(2021).

    [15] GAO Shanghua, CHENG Mingming, ZHAO Kai et al. Res2net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 652-662(2019).

    [16] SONG Xu, XIAO Yongbiao, LI Hui et al. Res2NetFuse: a fusion method for infrared and visible images[C](2023).

    [17] FENG Xin, YANG Jieming, ZHANG Hongde et al. Infrared and visible image fusion based on dual channel residual dense network[J]. Acta Photonica Sinica, 52, 1110003(2023).

    [18] HAO Shuai, LI Jiahao, MA Xu et al. Infrared and visible image fusion algorithm based on feature optimization and GAN[J]. Acta Photonica Sinica, 52, 1210004(2023).

    [19] ZHANG Zhancheng, GAO Yuanhao, XIONG Mengyu et al. A joint convolution auto-encoder network for infrared and visible image fusion[J]. Multimedia Tools and Applications, 82, 29017-29035(2023).

    [20] CHEN Zhaoyu, FAN Hongbo, MA Meiyan et al. FECFusion: infrared and visible image fusion network based on fast edge convolution[J]. Mathematical Biosciences and Engineering: MBE, 20, 16060-16082(2023).

    [21] WOO S, PARK J, LEE J Y et al. Cbam: convolutional block attention module[C], 3-19(2018).

    [22] WANG Zhou, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C], 2, 1398-1402(2003).

    [23] TOET A. The TNO multiband image data collection[J]. Data in Brief, 15, 249-251(2017).

    [24] XYDEAS C S, PETROVIC V. Objective image fusion performance measure[J]. Electronics Letters, 36, 308-309(2000).

    Tools

    Get Citation

    Copy Citation Text

    Hongde ZHANG, Xin FENG, Jieming YANG, Guohang QIU. A Dual Branch Edge Convolution Fusion Network for Infrared and Visible Images[J]. Acta Photonica Sinica, 2024, 53(8): 0810004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 2, 2024

    Accepted: Feb. 28, 2024

    Published Online: Oct. 15, 2024

    The Author Email: Xin FENG (149495263@qq.com)

    DOI:10.3788/gzxb20245308.0810004

    Topics