APPLIED LASER, Volume. 42, Issue 6, 137(2022)

A Phase Reconstruction Method of Broadband Light Source Based on Neural Network

Pan Jinjie1, Lin Dajun2, and Luan Haitao1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(33)

    [1] [1] HASANABADI A, BANIASSADI M, ABRINIA K, et al. 3D microstructural reconstruction of heterogeneous materials from 2D cross sections:A modified phase-recovery algorithm[J]. Computational Materials Science, 2016, 111: 107-115.

    [2] [2] SWEDLOW J R, GOLDBERG I, BRAUNER E, et al. Informatics and quantitative analysis in biological imaging[J]. Science, 2003, 300(5616): 100-102

    [3] [3] NEIL M A A, BOOTH M J, WILSON T. New modal wave-front sensor: A theoretical analysis[J]. Journal of the Optical Society of America A, 2000, 17(6): 1098.

    [4] [4] NICOLLE M, FUSCO T, ROUSSET G, et al. Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics[J]. Optics Letters, 2004, 29(23): 2743-2745.

    [5] [5] BAIK S H, PARK S K, KIM C J, et al. A center detection algorithm for Shack-Hartmann wavefront sensor[J]. Optics & Laser Technology, 2007, 39(2): 262-267.

    [6] [6] NEAL D R, COPLAND J, NEAL D A. Shack-Hartmann wavefront sensor precision and accuracy[C]//International Symposium on Optical Science and Technology. Proc SPIE 4779, Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, Seattle, WA, USA. 2002, 4779: 148-160.

    [7] [7] HOLL C T, MIHLTZ K, KURUCZ M, et al. Objective quantification and spatial mapping of cataract with a Shack-Hartmann wavefront sensor[J]. Scientific Reports, 2020, 10: 12585.

    [8] [8] PLATT B C, SHACK R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery (Thorofare, N J: 1995), 2001, 17(5): S573-S577.

    [9] [9] NORRIS B R M, WEI J, BETTERS C H, et al. An all-photonic focal-plane wavefront sensor[J]. Nature Communications, 2020, 11: 5335.

    [10] [10] WU Y C, SHARMA M K, VEERARAGHAVAN A. WISH: Wavefront imaging sensor with high resolution[J]. Light: Science & Applications, 2019, 8: 44.

    [11] [11] RAGAZZONI R, DIOLAITI E, VERNET E. A pyramid wavefront sensor with no dynamic modulation[J]. Optics Communications, 2002, 208(1-3): 51-60.

    [12] [12] POYNEER L A, GAVEL D T, BRASE J M. Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform[J].Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2002, 19(10): 2100-2111.

    [13] [13] RAGAZZONI R, FARINATO J. Sensitivity of a pyramidicwave front sensor in closed loop adaptive optics[J]. Astronomy and Astrophysics, 1999, 350: L23-L26.

    [14] [14] PEDRINI G, TIZIANI H J. Short-coherence digital microscopy by use of alensless holographic imaging system[J]. Applied Optics, 2002, 41(22): 4489-4496.

    [15] [15] ZHANG Y H, SHEN J X, LIANG C, et al. Image enhancement methods for observing human retina cells with adaptive optics[J]. Applied Laser, 2009, 29(5): 443-446.

    [17] [17] SHAPIRO D, THIBAULT P, BEETZ T, et al. Biological imaging by softX-ray diffraction microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(43): 15343-15346.

    [18] [18] EBRAHIMI S, DASHTDAR M, ANAND A, et al. Common-pathlensless digital holographic microscope employing a fresnel biprism[J]. Optics and Lasers in Engineering, 2020, 128: 106014.

    [19] [19] ZHU Y L, VAILLANT J, MONTAY G, et al. Generalized lock-in detection applied to lens-less digital holographic interferometry[C]//Imaging and Applied Optics 2016. Heidelberg. Washington, D.C.: OSA, 2016: DTh3C. 3.

    [20] [20] WU Y M, CHENG H B, WEN Y F. High-precision rotation angle measurement method based on a lensless digital holographic microscope[J]. Applied Optics, 2018, 57(1): 112-118.

    [21] [21] DEBNATH S K, PARK Y. Real-time quantitative phase imaging with a spatial phase-shifting algorithm[J]. OpticsLetters, 2011, 36(23): 4677-4679.

    [22] [22] MASUYAMA Y, YATABE K, KOIZUMI Y, et al. Phase reconstruction based on recurrent phase unwrapping with deep neural networks[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing. May 4-8, 2020, Barcelona, Spain. New York: IEEE, 2020: 826-830.

    [23] [23] WANG M, XIANG P, QI J M, et al. Reconstruction for tunable diode laser absorption tomography based on convolutional neural networks[J]. Applied Laser, 2021, 41(4): 890-901.

    [25] [25] WANG Z Q, TAN K, WANG D L. Deep learning based phase reconstruction for speaker separation:A trigonometric perspective[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing. May 12-17, 2019, Brighton, UK. New York: IEEE, 2019: 71-75.

    [26] [26] FIENUP J R. Phase retrieval algorithms: A comparison[J]. AppliedOptics, 1982, 21(15): 2758-2769.

    [27] [27] GUO C L, LIU S, SHERIDAN J T. Iterative phase retrieval algorithms I: optimization[J]. Applied Optics, 2015, 54(15): 4698.

    [28] [28] YANG G Z, DONG B Z, GU B Y, et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison[J]. Applied Optics, 1994, 33(2): 209-218.

    [29] [29] GUIGAY J P, LANGER M, BOISTEL R, et al. Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region[J]. OpticsLetters, 2007, 32(12): 1617-1619.

    [30] [30] LIN X, RIVENSON Y, YARDIMCI N T, et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 2018, 361: 1004-1008.

    [31] [31] YAN T, WU J M, ZHOU T K, et al. Fourier-space diffractive deep neural network[J]. Physical Review Letters, 2019, 123(2): 023901.

    [32] [32] LUAN H T, LIN D J, LI K Y, et al. 768-ary Laguerre-Gaussian-mode shift keying free-space optical communication based on convolutional neural networks[J]. Optics Express, 2021, 29(13): 19807-19818.

    [33] [33] GOI E, CHEN X, ZHANG Q M, et al. Nanoprinted high-neuron-density optical linear perceptrons performing near-infrared inference on a CMOS chip[J]. Light: Science & Applications, 2021, 10: 40.

    Tools

    Get Citation

    Copy Citation Text

    Pan Jinjie, Lin Dajun, Luan Haitao. A Phase Reconstruction Method of Broadband Light Source Based on Neural Network[J]. APPLIED LASER, 2022, 42(6): 137

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 28, 2022

    Accepted: --

    Published Online: Feb. 4, 2023

    The Author Email:

    DOI:10.14128/j.cnki.al.20224206.137

    Topics