Chinese Journal of Lasers, Volume. 49, Issue 3, 0309001(2022)

Three-Dimensional Reconstruction and Analysis of Target Laser Point Cloud Data Under Simulated Real Water Environment

Mingjun Wang1、*, Le Li1, Fang Yi1, and Xiaobo Lei2
Author Affiliations
  • 1School of Automation and Information Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
  • 2Engineering Training Center, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
  • show less
    Figures & Tables(11)
    Schematic of underwater target detection experiment device
    Model diagrams. (a) Submarine model; (b) underwater glider model; (c) anchor mine model
    Flow chart of 3D reconstruction algorithm for point cloud data
    Lidar optical path
    Data of each step using point cloud reconstruction algorithm. (a) Original point cloud data; (b) data after threshold segmentation; (c) data after refraction correction; (d) data after point cloud filtering
    Influence of turbidity changes on point cloud reconstruction
    Influence of detection distance changes on point cloud reconstruction
    • Table 1. Size reduction ratio of models to objects

      View table

      Table 1. Size reduction ratio of models to objects

      ModelObject size /mModel size /mScale down
      Submarine107.60.3001∶358
      Underwater glider2.00.3251∶6
      Anchor mine0.80.1301∶6
    • Table 2. Comparison of 3D standard model and reconstructed point cloud under salinity changes

      View table

      Table 2. Comparison of 3D standard model and reconstructed point cloud under salinity changes

      DescriptionSubmarineUnderwater gliderAnchor mine
      3D model of object
      One-sided point cloud model (standard)
      Point cloud reconstruction in clear water
      Error with standard point cloud in clear waterNumber of effective points:961Number of effective points:2081Number of effective points:1320
      Min. error:0.000192 mMin. error:0.000113 mMin. error:0.000121 m
      Max. error:0.0130 mMax. error:0.0452 mMax. error:0.0212 m
      Avg. error:0.0040 mAvg. error:0.0064 mAvg. error:0.0051 m
      Std. dev:0.0049 mStd. dev:0.0083 mStd. dev:0.0063 m
      30 PSU point cloud reconstruction of Bohai Sea
      Error with standard point cloud in the Bohai SeaNumber of effective points:1037Number of effective points:1977Number of effective points:1454
      Min. error:0.000109 mMin. error:0.000179 mMin. error:0.000069 m
      Max. error:0.0160 mMax. error:0.0511 mMax. error:0.0231 m
      Avg. error:0.0044 mAvg. error:0.0066 mAvg. error:0.0060 m
      Std. dev:0.0052 mStd. dev:0.0086 mStd. dev:0.0074 m
      35 PSU point cloud reconstruction of South China Sea
      Error with standard point cloud in the South China SeaNumber of effective points:1036Number of effective points:2270Number of effective points:1134
      Min. error:0.000186 mMin. error:0.000195 mMin. error:0.000097 m
      Max. error:0.0243 mMax. error:0.0602 mMax. error:0.0250 m
      Avg. error:0.0042 mAvg. error:0.0096 mAvg. error:0.0066 m
      Std. dev:0.0052 mStd. dev:0.0131 mStd. dev:0.0082 m
    • Table 3. Comparison of 3D standard point cloud and reconstructed point cloud under turbidity changes

      View table

      Table 3. Comparison of 3D standard point cloud and reconstructed point cloud under turbidity changes

      DescriptionSubmarineUnderwater gliderAnchor mine
      Point cloud reconstruction of South China Sea at salinity of 35 PSU
      Error with standard point cloud at salinity of 35 PSUNumber of effective points:1036Number of effective points:2270Number of effective points:1134
      Min. error:0.000186 mMin. error:0.000195 mMin. error:0.000097 m
      Max. error:0.0243 mMax. error:0.0602 mMax. error:0.0250 m
      Avg. error:0.0042 mAvg. error:0.0096 mAvg. error:0.0066 m
      Std. dev:0.0052 mStd. dev:0.0131 mStd. dev:0.0082 m
      Point cloud reconstruction of South China Sea at salinity of 35 PSU and turbidity of 1.2 JTU
      Error with standard point cloud at salinity of 35 PSU and turbidity of 1.2 JTUNumber of effective points:1142Number of effective points:1150Number of effective points:981
      Min. error:0.000144 mMin. error:0.000133 mMin. error:0.000101 m
      Max. error:0.0226 mMax. error:0.0391 mMax. error:0.0337 m
      Avg. error:0.0045 mAvg. error:0.0072 mAvg. error:0.0089 m
      Std. dev:0.0057 mStd. dev:0.0096 mStd. dev:0.0111 m
    • Table 4. Comparison of point cloud reconstruction in the South China Sea at detection distances of 60 cm and 80 cm

      View table

      Table 4. Comparison of point cloud reconstruction in the South China Sea at detection distances of 60 cm and 80 cm

      DescriptionSubmarineUnderwater gliderAnchor mine
      Point cloud reconstruction at 60 cm
      Error with standard point cloud at 60 cmNumber of effective points:1933Number of effective points:3161Number of effective points:2219
      Min. error:0.000049 mMin. error:0.0000767 mMin. error:0.000065 m
      Max. error:0.0120 mMax. error:0.0364 mMax. error:0.0203 m
      Avg. error:0.0027 mAvg. error:0.0050 mAvg. error:0.0042 m
      Std. dev:0.0034 mStd. dev:0.0061 mStd. dev:0.0053 m
      Point cloud reconstruction at 80 cm
      Error with standard point cloud at 80 cmNumber of effective points:1142Number of effective points:1150Number of effective points:981
      Min. error:0.000044 mMin. error:0.000133 mMin. error:0.000101 m
      Max. error:0.0126 mMax. error:0.0391 mMax. error:0.0337 m
      Avg. error:0.0037 mAvg. error:0.0072 mAvg. error:0.0089 m
      Std. dev:0.0045 mStd. dev:0.0096 mStd. dev:0.0111 m
    Tools

    Get Citation

    Copy Citation Text

    Mingjun Wang, Le Li, Fang Yi, Xiaobo Lei. Three-Dimensional Reconstruction and Analysis of Target Laser Point Cloud Data Under Simulated Real Water Environment[J]. Chinese Journal of Lasers, 2022, 49(3): 0309001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: holography and information processing

    Received: May. 8, 2021

    Accepted: Jun. 18, 2021

    Published Online: Jan. 18, 2022

    The Author Email: Wang Mingjun (wmjxd@aliyun.com)

    DOI:10.3788/CJL202249.0309001

    Topics