OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 18, Issue 3, 81(2020)

Imaging Analysis of Through Turbid Media Based on Auxiliary Reference

WANG Jin-chao*, ZHOU Xin, BAI Xing, and WANG Jing
Author Affiliations
  • [in Chinese]
  • show less
    References(40)

    [1] [1] Freund I, Rosenbluh M, Berkovits R. Geometric scaling of the optical memory effect in coherent-wave propagation through random media[J]. Physical Review B Condensed Matter, 1989, 39(16): 12403-12406.

              Freund I, Rosenbluh M, Berkovits R. Geometric scaling of the optical memory effect in coherent-wave propagation through random media[J]. Physical Review B Condensed Matter, 1989, 39(16): 12403-12406.

    [2] [2] Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 1988, 61(20): 2328-2331.

              Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 1988, 61(20): 2328-2331.

    [3] [3] Joshkin V A, Roberts J C, Mcintosh F G, et al. Optical memory effect in GaN epitaxial films[J]. Applied Physics Letters, 1997, 71(2): 234-236.

              Joshkin V A, Roberts J C, Mcintosh F G, et al. Optical memory effect in GaN epitaxial films[J]. Applied Physics Letters, 1997, 71(2): 234-236.

    [4] [4] Osnabrugge G, Horstmeyer R, Papadopoulos I N, et al. The generalized optical memory effect[J]. Optica, 2017, 4(8): 886-892.

              Osnabrugge G, Horstmeyer R, Papadopoulos I N, et al. The generalized optical memory effect[J]. Optica, 2017, 4(8): 886-892.

    [5] [5] Bertolotti J, Van P E G, Blum C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491(7423): 232-234.

              Bertolotti J, Van P E G, Blum C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491(7423): 232-234.

    [6] [6] SUN Cun-zhi, CHEN Zi-yang, PU Ji-xiong. Modulating the amplitude of scattering light for focusing [J]. Acta Optica Sinica, 2014, 34(8): 318-322.

              SUN Cun-zhi, CHEN Zi-yang, PU Ji-xiong. Modulating the amplitude of scattering light for focusing [J]. Acta Optica Sinica, 2014, 34(8): 318-322.

    [7] [7] Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 2014, 8(10): 784-790.

              Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 2014, 8(10): 784-790.

    [8] [8] RoarkeH, YangC. A phase space model of Fourier ptychographic microscopy[J]. Optics express, 2014, 22(1): 338-358.

              RoarkeH, YangC. A phase space model of Fourier ptychographic microscopy[J]. Optics express, 2014, 22(1): 338-358.

    [9] [9] Ou X, Horstmeyer R, Zheng G, et al. High numerical aperture Fourier ptychography: principle, implementation and characterization[J]. Optics Express, 2015, 23(3): 3472-3491.

              Ou X, Horstmeyer R, Zheng G, et al. High numerical aperture Fourier ptychography: principle, implementation and characterization[J]. Optics Express, 2015, 23(3): 3472-3491.

    [10] [10] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.

              Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.

    [11] [11] Liu G, Scott PD. Phase retrieval and twin-image elimination for in-line fresnel holograms[J]. Journal of the Optical Society of America A, 1987, 4(1): 159-165.

              Liu G, Scott PD. Phase retrieval and twin-image elimination for in-line fresnel holograms[J]. Journal of the Optical Society of America A, 1987, 4(1): 159-165.

    [12] [12] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase form image and diffraction planepictures[J]. Optik, 1972, 35(2): 237-250.

              Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase form image and diffraction planepictures[J]. Optik, 1972, 35(2): 237-250.

    [13] [13] Shao X, Dai W, Wu T, et al. Speckle-correlation imaging through highly scattering turbid media with LED illumination[C]// Smart Biomedical & Physiological Sensor Technology XII. International Society for Optics and Photonics, 2015.

              Shao X, Dai W, Wu T, et al. Speckle-correlation imaging through highly scattering turbid media with LED illumination[C]// Smart Biomedical & Physiological Sensor Technology XII. International Society for Optics and Photonics, 2015.

    [14] [14] Yang W Q, Li G W, Situ G H, Imaging through scattering media with the auxiliary of a known reference object[J]. Scientific Reports, 2018, 8(1): 9614.

              Yang W Q, Li G W, Situ G H, Imaging through scattering media with the auxiliary of a known reference object[J]. Scientific Reports, 2018, 8(1): 9614.

    [15] [15] Rodenburg J M. Ptychography and related diffractive imaging methods[J]. Advances in Imaging and Electron Physics, 2008, 163: 87-184.

              Rodenburg J M. Ptychography and related diffractive imaging methods[J]. Advances in Imaging and Electron Physics, 2008, 163: 87-184.

    [16] [16] WEN Zheng-bo, WU Yu-lin, ZHANG Xiu-da, et al. A real time imaging method for internal targets of strongly scattering media with high resolution [J]. Atca Optica Sinica, 2015, 35(2): 166-172.

              WEN Zheng-bo, WU Yu-lin, ZHANG Xiu-da, et al. A real time imaging method for internal targets of strongly scattering media with high resolution [J]. Atca Optica Sinica, 2015, 35(2): 166-172.

    [17] [17] LIANG Zi, AN Xiao-ying, ZHANG Ru, et al. Imaging through turbid media based on speckled illumination and hologrephy[J]. Atca Optica Sinica, 2017, (08): 142-149.

              LIANG Zi, AN Xiao-ying, ZHANG Ru, et al. Imaging through turbid media based on speckled illumination and hologrephy[J]. Atca Optica Sinica, 2017, (08): 142-149.

    [18] [18] Shao X P, Wu T F, Gong C M. Simulation on light refocusing through a highly scattering turbid medium using circular Gaussian distribution model[J]. Optical Engineering, 2013, 52(11): 113104.

              Shao X P, Wu T F, Gong C M. Simulation on light refocusing through a highly scattering turbid medium using circular Gaussian distribution model[J]. Optical Engineering, 2013, 52(11): 113104.

    [19] [19] JIA Hui, LUO Xiu-juan, ZHANG Yu, et al. All-optical imaging and tracking technology for rectilinear motion targets through scattering media[J]. Acta Physica Sinica, 2018, 67(22): 242-249.

              JIA Hui, LUO Xiu-juan, ZHANG Yu, et al. All-optical imaging and tracking technology for rectilinear motion targets through scattering media[J]. Acta Physica Sinica, 2018, 67(22): 242-249.

    [20] [20] Berrocal E, PetterssonS, Kristensson E. High-contrast imaging through scattering media using structured illumination and Fourier filtering[J]. Optics Letters, 2016, 41(23): 5612.

              Berrocal E, PetterssonS, Kristensson E. High-contrast imaging through scattering media using structured illumination and Fourier filtering[J]. Optics Letters, 2016, 41(23): 5612.

    Tools

    Get Citation

    Copy Citation Text

    WANG Jin-chao, ZHOU Xin, BAI Xing, WANG Jing. Imaging Analysis of Through Turbid Media Based on Auxiliary Reference[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2020, 18(3): 81

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 1, 2019

    Accepted: --

    Published Online: Jun. 18, 2020

    The Author Email: Jin-chao WANG (1670407025@qq.com)

    DOI:

    CSTR:32186.14.

    Topics