OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 18, Issue 3, 81(2020)
Imaging Analysis of Through Turbid Media Based on Auxiliary Reference
[1] [1] Freund I, Rosenbluh M, Berkovits R. Geometric scaling of the optical memory effect in coherent-wave propagation through random media[J]. Physical Review B Condensed Matter, 1989, 39(16): 12403-12406.
Freund I, Rosenbluh M, Berkovits R. Geometric scaling of the optical memory effect in coherent-wave propagation through random media[J]. Physical Review B Condensed Matter, 1989, 39(16): 12403-12406.
[2] [2] Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 1988, 61(20): 2328-2331.
Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 1988, 61(20): 2328-2331.
[3] [3] Joshkin V A, Roberts J C, Mcintosh F G, et al. Optical memory effect in GaN epitaxial films[J]. Applied Physics Letters, 1997, 71(2): 234-236.
Joshkin V A, Roberts J C, Mcintosh F G, et al. Optical memory effect in GaN epitaxial films[J]. Applied Physics Letters, 1997, 71(2): 234-236.
[4] [4] Osnabrugge G, Horstmeyer R, Papadopoulos I N, et al. The generalized optical memory effect[J]. Optica, 2017, 4(8): 886-892.
Osnabrugge G, Horstmeyer R, Papadopoulos I N, et al. The generalized optical memory effect[J]. Optica, 2017, 4(8): 886-892.
[5] [5] Bertolotti J, Van P E G, Blum C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491(7423): 232-234.
Bertolotti J, Van P E G, Blum C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491(7423): 232-234.
[6] [6] SUN Cun-zhi, CHEN Zi-yang, PU Ji-xiong. Modulating the amplitude of scattering light for focusing [J]. Acta Optica Sinica, 2014, 34(8): 318-322.
SUN Cun-zhi, CHEN Zi-yang, PU Ji-xiong. Modulating the amplitude of scattering light for focusing [J]. Acta Optica Sinica, 2014, 34(8): 318-322.
[7] [7] Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 2014, 8(10): 784-790.
Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 2014, 8(10): 784-790.
[8] [8] RoarkeH, YangC. A phase space model of Fourier ptychographic microscopy[J]. Optics express, 2014, 22(1): 338-358.
RoarkeH, YangC. A phase space model of Fourier ptychographic microscopy[J]. Optics express, 2014, 22(1): 338-358.
[9] [9] Ou X, Horstmeyer R, Zheng G, et al. High numerical aperture Fourier ptychography: principle, implementation and characterization[J]. Optics Express, 2015, 23(3): 3472-3491.
Ou X, Horstmeyer R, Zheng G, et al. High numerical aperture Fourier ptychography: principle, implementation and characterization[J]. Optics Express, 2015, 23(3): 3472-3491.
[10] [10] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.
Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.
[11] [11] Liu G, Scott PD. Phase retrieval and twin-image elimination for in-line fresnel holograms[J]. Journal of the Optical Society of America A, 1987, 4(1): 159-165.
Liu G, Scott PD. Phase retrieval and twin-image elimination for in-line fresnel holograms[J]. Journal of the Optical Society of America A, 1987, 4(1): 159-165.
[12] [12] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase form image and diffraction planepictures[J]. Optik, 1972, 35(2): 237-250.
Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase form image and diffraction planepictures[J]. Optik, 1972, 35(2): 237-250.
[13] [13] Shao X, Dai W, Wu T, et al. Speckle-correlation imaging through highly scattering turbid media with LED illumination[C]// Smart Biomedical & Physiological Sensor Technology XII. International Society for Optics and Photonics, 2015.
Shao X, Dai W, Wu T, et al. Speckle-correlation imaging through highly scattering turbid media with LED illumination[C]// Smart Biomedical & Physiological Sensor Technology XII. International Society for Optics and Photonics, 2015.
[14] [14] Yang W Q, Li G W, Situ G H, Imaging through scattering media with the auxiliary of a known reference object[J]. Scientific Reports, 2018, 8(1): 9614.
Yang W Q, Li G W, Situ G H, Imaging through scattering media with the auxiliary of a known reference object[J]. Scientific Reports, 2018, 8(1): 9614.
[15] [15] Rodenburg J M. Ptychography and related diffractive imaging methods[J]. Advances in Imaging and Electron Physics, 2008, 163: 87-184.
Rodenburg J M. Ptychography and related diffractive imaging methods[J]. Advances in Imaging and Electron Physics, 2008, 163: 87-184.
[16] [16] WEN Zheng-bo, WU Yu-lin, ZHANG Xiu-da, et al. A real time imaging method for internal targets of strongly scattering media with high resolution [J]. Atca Optica Sinica, 2015, 35(2): 166-172.
WEN Zheng-bo, WU Yu-lin, ZHANG Xiu-da, et al. A real time imaging method for internal targets of strongly scattering media with high resolution [J]. Atca Optica Sinica, 2015, 35(2): 166-172.
[17] [17] LIANG Zi, AN Xiao-ying, ZHANG Ru, et al. Imaging through turbid media based on speckled illumination and hologrephy[J]. Atca Optica Sinica, 2017, (08): 142-149.
LIANG Zi, AN Xiao-ying, ZHANG Ru, et al. Imaging through turbid media based on speckled illumination and hologrephy[J]. Atca Optica Sinica, 2017, (08): 142-149.
[18] [18] Shao X P, Wu T F, Gong C M. Simulation on light refocusing through a highly scattering turbid medium using circular Gaussian distribution model[J]. Optical Engineering, 2013, 52(11): 113104.
Shao X P, Wu T F, Gong C M. Simulation on light refocusing through a highly scattering turbid medium using circular Gaussian distribution model[J]. Optical Engineering, 2013, 52(11): 113104.
[19] [19] JIA Hui, LUO Xiu-juan, ZHANG Yu, et al. All-optical imaging and tracking technology for rectilinear motion targets through scattering media[J]. Acta Physica Sinica, 2018, 67(22): 242-249.
JIA Hui, LUO Xiu-juan, ZHANG Yu, et al. All-optical imaging and tracking technology for rectilinear motion targets through scattering media[J]. Acta Physica Sinica, 2018, 67(22): 242-249.
[20] [20] Berrocal E, PetterssonS, Kristensson E. High-contrast imaging through scattering media using structured illumination and Fourier filtering[J]. Optics Letters, 2016, 41(23): 5612.
Berrocal E, PetterssonS, Kristensson E. High-contrast imaging through scattering media using structured illumination and Fourier filtering[J]. Optics Letters, 2016, 41(23): 5612.
Get Citation
Copy Citation Text
WANG Jin-chao, ZHOU Xin, BAI Xing, WANG Jing. Imaging Analysis of Through Turbid Media Based on Auxiliary Reference[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2020, 18(3): 81
Category:
Received: Dec. 1, 2019
Accepted: --
Published Online: Jun. 18, 2020
The Author Email: Jin-chao WANG (1670407025@qq.com)
CSTR:32186.14.