Journal of Synthetic Crystals, Volume. 51, Issue 12, 2118(2022)
Effect of Li0.5Bi0.5MoO4 on Microwave Dielectric Properties of Li2Zn2(MoO4)3 Ceramics
[1] [1] OHSATO H. Research and development of microwave dielectric ceramics for wireless communications[J]. Journal of the Ceramic Society of Japan, 2005, 113(1323): 703711.
[2] [2] SEBASTIAN M T. Acknowledgment[M]//Dielectric Materials for Wireless Communication. Amsterdam: Elsevier, 2008: xiii.
[3] [3] SEBASTIAN M T, WANG H, JANTUNEN H. Low temperature cofired ceramics with ultralow sintering temperature: a review[J]. Current Opinion in Solid State and Materials Science, 2016, 20(3): 151170.
[4] [4] LUO X F, REN L C, XIA Y S, et al. Microstructure, sinterability and properties of CaOB2O3SiO2 glass/Al2O3 composites for LTCC application[J]. Ceramics International, 2017, 43(9): 67916795.
[6] [6] WENG Z Z, GUAN R G, XIONG Z X. Effects of the ZBS addition on the sintering behavior and microwave dielectric properties of 0.95Zn2SiO40.05CaTiO3 ceramics[J]. Journal of Alloys and Compounds, 2017, 695: 35173521.
[7] [7] WENG Z Z, WU C, XIONG Z X, et al. Low temperature sintering and microwave dielectric properties of TiO2 ceramics[J]. Journal of the European Ceramic Society, 2017, 37(15): 46674672.
[8] [8] ZHANG G Q, GUO J, HE L, et al. Preparation and microwave dielectric properties of ultralow temperature sintering ceramics in K2OMoO3 binary system[J]. Journal of the American Ceramic Society, 2014, 97(1): 241245.
[9] [9] ZHANG G Q, WANG H, GUO J, et al. Ultralow sintering temperature microwave dielectric ceramics based on Na2OMoO3 binary system[J]. Journal of the American Ceramic Society, 2015, 98(2): 528533.
[10] [10] ZHOU D, PANG L X, QI Z M, et al. Novel ultralow temperature cofired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal[J]. Scientific Reports, 2014, 4: 5980.
[11] [11] ZHOU D, WANG H, PANG L X. Bi2O3MoO3 binary system: an alternative ultralow sintering temperature microwave dielectric[J]. Journal of the American Ceramic Society, 2009, 92(10): 22422246.
[12] [12] ZHOU D, RANDALL C A, PANG L X, et al. Microwave dielectric properties of Li2(M2+)2Mo3O12 and Li3(M3+)Mo3O12 (M=Zn, Ca, Al, and In) lyonsiterelatedtype ceramics with ultralow sintering temperatures[J]. Journal of the American Ceramic Society, 2011, 94(3): 802805.
[13] [13] LIU X B, ZHOU H F, CHEN X L, et al. Phase structure and microwave dielectric properties of (1-x)Li2Zn3Ti4O12xTiO2 ceramics[J]. Journal of Alloys and Compounds, 2012, 515: 2225.
[14] [14] QUAN T T, SHU G J, HAO L, et al. Phase compositions, microstructures, and microwave dielectric properties of Li2Zn3Ti4O12based temperature stable materials modified by CaTiO3 additions[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(22): 2016020165.
[17] [17] ZHOU D, RANDALL C A, PANG L X, et al. Microwave dielectric properties of (ABi)1/2MoO4 (A=Li, Na, K, Rb, Ag) type ceramics with ultralow firing temperatures[J]. Materials Chemistry and Physics, 2011, 129(3): 688692.
[18] [18] ZHANG Y H, SUN J J, DAI N, et al. Crystal structure, infrared spectra and microwave dielectric properties of novel extra lowtemperature fired Eu2Zr3(MoO4)9 ceramics[J]. Journal of the European Ceramic Society, 2019, 39(4): 11271131.
[19] [19] GUO J, ZHOU D, WANG H, et al. Microwave and infrared dielectric response of temperature stable (1-x)BaMoO4xTiO2 composite ceramics[J]. Journal of the American Ceramic Society, 2012, 95(1): 232237.
Get Citation
Copy Citation Text
SHU Guojin, DOU Zhanming, YANG Jun, PANG Jinbiao, YUAN Shifeng, LIU Kai, SHEN Yiting. Effect of Li0.5Bi0.5MoO4 on Microwave Dielectric Properties of Li2Zn2(MoO4)3 Ceramics[J]. Journal of Synthetic Crystals, 2022, 51(12): 2118
Category:
Received: Jul. 19, 2022
Accepted: --
Published Online: Feb. 18, 2023
The Author Email: SHU Guojin (guojinshu2021@163.com)
CSTR:32186.14.