Chinese Journal of Lasers, Volume. 50, Issue 22, 2213001(2023)
Optical Degenerate Points Regulation in One‑Dimensional Quaternary Periodic PT Symmetric Structure
[1] Bender C M, Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry[J]. Physical Review Letters, 80, 5243-5246(1998).
[2] Ahmed Z. Energy band structure due to a complex, periodic, PT-invariant potential[J]. Physics Letters A, 286, 231-235(2001).
[3] Ahmed Z. Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential[J]. Physics Letters A, 282, 343-348(2001).
[4] El-Ganainy R, Makris K G, Christodoulides D N et al. Theory of coupled optical PT-symmetric structures[J]. Optics Letters, 32, 2632-2634(2007).
[5] Zhu X F, Feng L, Zhang P et al. One-way invisible cloak using parity-time symmetric transformation optics[J]. Optics Letters, 38, 2821-2824(2013).
[6] Wang Y Y, Xia J, Fang Y T. Unique non-reciprocal mode with a parity-time symmetric structure under magneto-optic effects[J]. Chinese Journal of Lasers, 45, 1213001(2018).
[7] Longhi S. PT-symmetric laser absorber[J]. Physical Review A, 82, 031801(2010).
[8] Fu T, Wang Y F, Wang X Y et al. Microstructure lasers based on parity-time symmetry and supersymmetry[J]. Chinese Journal of Lasers, 48, 1201005(2021).
[9] Ge L, Chong Y D, Stone A D. Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures[J]. Physical Review A, 85, 023802(2012).
[10] Zhu X F, Peng Y G, Zhao D G. Anisotropic reflection oscillation in periodic multilayer structures of parity-time symmetry[J]. Optics Express, 22, 18401-18411(2014).
[11] Othman M A K, Galdi V, Capolino F. Exceptional points of degeneracy and PT symmetry in photonic coupled chains of scatterers[J]. Physical Review B, 95, 104305(2017).
[12] Wood M G, Burr J R, Reano R M. Degenerate band edge resonances in periodic silicon ridge waveguides[J]. Optics Letters, 40, 2493-2496(2015).
[13] El-Ganainy R, Khajavikhan M, Ge L. Exceptional points and lasing self-termination in photonic molecules[J]. Physical Review A, 90, 013802(2014).
[14] Zhen B, Hsu C W, Igarashi Y et al. Spawning rings of exceptional points out of Dirac cones[J]. Nature, 525, 354-358(2015).
[15] Baranov D G, Krasnok A, Shegai T et al. Coherent perfect absorbers: linear control of light with light[J]. Nature Reviews Materials, 2, 17064(2017).
[16] Lan J, Zhang X W, Wang L W et al. Bidirectional acoustic negative refraction based on a pair of metasurfaces with both local and global PT-symmetries[J]. Scientific Reports, 10, 10794(2020).
[17] Ma P J, Gao L. Large and tunable lateral shifts in one-dimensional PT-symmetric layered structures[J]. Optics Express, 25, 9676-9688(2017).
[18] Zhou X X, Lin X, Xiao Z C et al. Controlling photonic spin Hall effect via exceptional points[J]. Physical Review B, 100, 115429(2019).
[19] Fu Y Y, Fei Y, Dong D X et al. Photonic spin Hall effect in PT symmetric metamaterials[J]. Frontiers of Physics, 14, 62601(2019).
[20] Liang C K, Liu D X, Liu R et al. Chirality-modulated photonic spin Hall effect in PT-symmetry[J]. Nanophotonics, 11, 3475-3484(2022).
[21] Zhang X Y, Kang M, Liu H G et al. Sensing applications of exceptional points in non-Hermitian optical systems[J]. Chinese Journal of Lasers, 47, 0300001(2020).
[22] Ye S F, Fang Y T. Blood glucose sensor based on parity-time symmetry coupled cavities[J]. Chinese Journal of Lasers, 49, 0310002(2022).
[23] Wang L Y, Liu F H, Liu F M et al. Optical fractal and exceptional points in PT symmetry Thue-Morse photonic multilayers[J]. Optical Materials, 123, 111821(2022).
[24] Zhu X F. Defect states and exceptional point splitting in the band gaps of one-dimensional parity-time lattices[J]. Optics Express, 23, 22274-22284(2015).
[25] Özbay E, Abeyta A, Tuttle G et al. Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods[J]. Physical Review B, 50, 1945-1948(1994).
[26] Xia M L, Luo J J, Chen C et al. Semiconductor quantum dots-embedded inorganic glasses: fabrication, luminescent properties, and potential applications[J]. Advanced Optical Materials, 7, 1900851(2019).
[27] Govyadinov A A, Podolskiy V A, Noginov M A. Active metamaterials: sign of refractive index and gain-assisted dispersion management[J]. Applied Physics Letters, 91, 191103(2007).
[28] Ding S L, Wang G P. Extraordinary reflection and transmission with direction dependent wavelength selectivity based on parity-time-symmetric multilayers[J]. Journal of Applied Physics, 117, 023104(2015).
[29] Zhang Y C, Jiang X M, Xia J et al. Tunable high sensitivity temperature sensor based on transmittance changes of parity-time symmetry structure[J]. Chinese Journal of Lasers, 45, 0710002(2018).
[30] Jiang Y C. The study on the electric and optical properties of phosphorus or boron doped Si nanocrystalline/SiO2 multilayers[D](2019).
[31] Novitsky A, Lyakhov D, Michels D et al. Unambiguous scattering matrix for non-Hermitian systems[J]. Physical Review A, 101, 043834(2020).
[32] Luo Z M, Qu S, Liu J et al. General conditions of polarization-independent transmissions in one-dimensional magnetic photonic crystals[J]. Journal of Modern Optics, 60, 171-176(2013).
[33] Luo Z M, Chen M, Deng J Y et al. Low-pass spatial filters with small angle-domain bandwidth based on one-dimensional metamaterial photonic crystals[J]. Optik, 127, 259-262(2016).
[34] Tang Y, Yang X B, Zheng J et al. Singular characteristics of optical Thue-Morse multilayers composed of PT-symmetric elements[J]. Annalen Der Physik, 531, 1900275(2019).
[35] Zhao D, Zhou G P, Wang Y et al. Double-wavelength coherent perfect absorption laser in Thue-Morse PT-symmetric photonic crystals[J]. Results in Physics, 39, 105746(2022).
[36] Russell P S. Bragg resonance of light in optical superlattices[J]. Physical Review Letters, 56, 596-599(1986).
[37] Shramkova O V, Tsironis G P. Scattering properties of PT-symmetric layered periodic structures[J]. Journal of Optics, 18, 105101(2016).
[38] Wu H Z, Yang X B, Tang Y et al. The scattering problem in PT-symmetric periodic structures of 1D two-material waveguide networks[J]. Annalen Der Physik, 531, 1900120(2019).
[39] Onoda M, Murakami S, Nagaosa N. Hall effect of light[J]. Physical Review Letters, 93, 083901(2004).
[40] Wang Y. Spin Hall effect of light on the surface of functional photonic crystal[J]. Laser & Optoelectronics Progress, 58, 2316003(2021).
[41] Zhou X X, Ling X H, Luo H L et al. Identifying graphene layers via spin Hall effect of light[J]. Applied Physics Letters, 101, 251602(2012).
[42] Liu S Q, Shou Y C, Zhou X et al. Lattice-dependent spin Hall effect of light in a Weyl semimetal[J]. Optics Express, 28, 10783-10793(2020).
[43] Tang P, Shu Y T, Wen Z X et al. High-resolution determination of kinetic parameters of sucrose hydrolysis based on weak measurement[J]. IEEE Photonics Journal, 14, 6810106(2022).
[44] Luo Z M, Tang P, Zhang Y et al. High-resolution identification of amino acid species based on quantum weak measurement[J]. Acta Optica Sinica, 42, 2227001(2022).
[45] He S S, Zhou J X, Chen S Z et al. Spatial differential operation and edge detection based on the geometric spin Hall effect of light[J]. Optics Letters, 45, 877-880(2020).
Get Citation
Copy Citation Text
Yifei Song, Yetao Shu, peng Tang, ting Wan, Zhaoming Luo. Optical Degenerate Points Regulation in One‑Dimensional Quaternary Periodic PT Symmetric Structure[J]. Chinese Journal of Lasers, 2023, 50(22): 2213001
Category: micro and nano optics
Received: Oct. 17, 2022
Accepted: Jan. 6, 2023
Published Online: Nov. 7, 2023
The Author Email: Luo Zhaoming (zhaomingluo@hnu.edu.cn)