Journal of Synthetic Crystals, Volume. 51, Issue 5, 801(2022)

Research Progress on Diamond Radio-Voltaic Effect Isotope Batteries Devices

LIU Benjian1、*, ZHANG Sen1, HAO Xiaobin1, WEN Dongyue1, ZHAO Jiwen1, WANG Weihua1, LIU Kang1, CAO Wenxin1, DAI Bing1, YANG Lei2, HAN Jiecai1, and ZHU Jiaqi1,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(33)

    [1] [1] LU X H, YU M H, WANG G M, et al. Flexible solid-state supercapacitors: design, fabrication and applications[J]. Energy & Environmental Science, 2014, 7(7): 2160.

    [2] [2] SUHAS K. Atomic batteries: energy from radioactivity[J]. Journal of Nuclear Energy Science & Power Generation Technology, 2015, 5(1): 07427.

    [3] [3] PRELAS M, BORAAS M, AGUILAR F D L T, et al. Nuclear batteries and radioisotopes[M]. Switzerland: Springer International Publishing, 2016.

    [4] [4] DELFAURE C, POMORSKI M, DE SANOIT J, et al. Single crystal CVD diamond membranes for betavoltaic cells[J]. Applied Physics Letters, 2016, 108(25): 252105.

    [5] [5] TALLA V, KELLOGG B, GOLLAKOTA S, et al. Battery-free cellphone[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(2): 1-20.

    [8] [8] LIAO M Y. Progress in semiconductor diamond photodetectors and MEMS sensors[J]. Functional Diamond, 2021, 1(1): 29-46.

    [9] [9] GEIS M W, WADE T C, WUORIO C H, et al. Progress toward diamond power field-effect transistors[J]. Physica Status Solidi (a), 2018, 215(22): 1800681.

    [10] [10] OLSEN L C, CABAUY P, ELKIND B J. Betavoltaic power sources[J]. Physics Today, 2012, 65(12): 35-38.

    [11] [11] ARAVINDAN V, GNANARAJ J, LEE Y S, et al. Insertion-type electrodes for nonaqueous Li-ion capacitors[J]. Chemical Reviews, 2014, 114(23): 11619-11635.

    [12] [12] THOMAS C, PORTNOFF S, SPENCER M G. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes[J]. Applied Physics Letters, 2016, 108(1): 013505.

    [13] [13] BORMASHOV V S, TROSCHIEV S Y, TARELKIN S A, et al. High power density nuclear battery prototype based on diamond Schottky diodes[J]. Diamond and Related Materials, 2018, 84: 41-47.

    [14] [14] OLSEN L C. Betavoltaic energy conversion[J]. Energy Conversion, 1973, 13(4): 117-127.

    [15] [15] POMORSKI M, BERDERMANN E, CARAGHEORGHEOPOL A, et al. Development of single-crystal CVD-diamond detectors for spectroscopy and timing[J]. Physica Status Solidi (a), 2006, 203(12): 3152-3160.

    [16] [16] PRELAS M A, WEAVER C L, WATERMANN M L, et al. A review of nuclear batteries[J]. Progress in Nuclear Energy, 2014, 75: 117-148.

    [17] [17] LIU Y M, LU J B, LI X Y, et al. Theoretical prediction of diamond betavoltaic batteries performance using 63Ni[J]. Chinese Physics Letters, 2018, 35(7): 072301.

    [18] [18] ZIEGLER J F, ZIEGLER M D, BIERSACK J P. SRIM-The stopping and range of ions in matter (2010)[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11/12): 1818-1823.

    [19] [19] OLSEN L C. Review of betavoltaic energy conversion[C]//NASA Conference Publication. NASA, 1993: 256-256.

    [20] [20] TRUCCHI D M, CAPPELLI E, LISI N, et al. Feasibility of CVD diamond radiation energy conversion devices[J]. Diamond and Related Materials, 2006, 15(11/12): 1980-1985.

    [21] [21] BORMASHOV V, TROSCHIEV S, VOLKOV A, et al. Development of nuclear microbattery prototype based on Schottky barrier diamond diodes[J]. Physica Status Solidi (a), 2015, 212(11): 2539-2547.

    [22] [22] TARELKIN S, BORMASHOV V, KOROSTYLEV E, et al. Comparative study of different metals for Schottky barrier diamond betavoltaic power converter by EBIC technique[J]. Physica Status Solidi (a), 2016, 213(9): 2492-2497.

    [23] [23] LIU B J, DAI B, LIU K, et al. Alpha-voltaic battery on diamond Schottky barrier diode[J]. Diamond and Related Materials, 2018, 87: 35-42.

    [24] [24] LIU B J, LIU K, RALCHENKO V, et al. Effect of americium-241 source activity on total conversion efficiency of diamond alpha-voltaic battery[J]. International Journal of Energy Research, 2019, 43(11): 6038-6044.

    [25] [25] GRUSHKO V, BELIUSKINA O, MAMALIS A, et al. Energy conversion efficiency in betavoltaic cells based on the diamond Schottky diode with a thin drift layer[J]. Applied Radiation and Isotopes, 2020, 157: 109017.

    [26] [26] LIU B J, LIU K, ZHAO J W, et al. Enhanced performance of diamond Schottky nuclear batteries by using ZnO as electron transport layer[J]. Diamond and Related Materials, 2020, 109: 108026.

    [27] [27] SHIMAOKA T, UMEZAWA H, ICHIKAWA K, et al. Ultrahigh conversion efficiency of betavoltaic cell using diamond pn junction[J]. Applied Physics Letters, 2020, 117(10): 103902.

    [28] [28] LI H D, SANG D D, CHENG S H, et al. Epitaxial growth of ZnO nanorods on diamond and negative differential resistance of n-ZnO nanorod/p-diamond heterojunction[J]. Applied Surface Science, 2013, 280: 201-206.

    [29] [29] SANG D D, WANG Q R, WANG Q L, et al. Improved electrical transport properties of an n-ZnO nanowire/p-diamond heterojunction[J]. RSC Advances, 2018, 8(50): 28804-28809.

    [30] [30] SANG D D, LI H D, CHENG S H, et al. Ultraviolet photoelectrical properties of a n-ZnO nanorods/p-diamond heterojunction[J]. RSC Advances, 2015, 5(61): 49211-49215.

    [31] [31] HIRAMA K, TANIYASU Y, KASU M. Electroluminescence and capacitance-voltage characteristics of single-crystal n-type AlN (0001)/p-type diamond (111) heterojunction diodes[J]. Applied Physics Letters, 2011, 98(1): 011908.

    [32] [32] MISKYS C R, GARRIDO J A, NEBEL C E, et al. AlN/diamond heterojunction diodes[J]. Applied Physics Letters, 2003, 82(2): 290-292.

    [33] [33] KIM H, TARELKIN S, POLYAKOV A, et al. Ultrawide-bandgap p-n heterojunction of diamond/β-Ga2O3 for a solar-blind photodiode[J]. ECS Journal of Solid State Science and Technology, 2020, 9(4): 045004.

    [34] [34] WANG L Y, CHENG S H, WU C Z, et al. Fabrication and high temperature electronic behaviors of n-WO3 nanorods/p-diamond heterojunction[J]. Applied Physics Letters, 2017, 110(5): 052106.

    Tools

    Get Citation

    Copy Citation Text

    LIU Benjian, ZHANG Sen, HAO Xiaobin, WEN Dongyue, ZHAO Jiwen, WANG Weihua, LIU Kang, CAO Wenxin, DAI Bing, YANG Lei, HAN Jiecai, ZHU Jiaqi. Research Progress on Diamond Radio-Voltaic Effect Isotope Batteries Devices[J]. Journal of Synthetic Crystals, 2022, 51(5): 801

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 2, 2022

    Accepted: --

    Published Online: Jul. 7, 2022

    The Author Email: Benjian LIU (990986685@qq.com)

    DOI:

    CSTR:32186.14.

    Topics