Acta Optica Sinica, Volume. 41, Issue 21, 2111001(2021)
Study of Multi-Resolution Microscopic Correlation Imaging Based on Optimized Hadamard Matrix
[1] Jacob Z, Alekseyev L V, Narimanov E. Optical hyperlens: far-field imaging beyond the diffraction limit[J]. Optics Express, 14, 8247-8256(2006).
[2] Huang X, Fan J, Li L et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy[J]. Nature Biotechnology, 36, 451-459(2018).
[3] Pan W H, Chen B L, Zhang J G et al. Compressed sensing STORM super-resolution image reconstruction based on noise correction-principal component analysis preprocessing algorithm[J]. Chinese Journal of Lasers, 47, 020724(2020).
[4] Liu X X, Guo H X, Xu T et al. In-situ liquid phase transmission electron microscope and its application in nanoparticle characterization[J]. Acta Physica Sinica, 70, 086701(2021).
[5] Klar T A, Jakobs S, Dyba M et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences of USA, 97, 8206-8210(2000).
[6] Liu Z, Luo Z W, Wang Z Y et al. Super-resolution fluorescence microscopy image reconstruction algorithm based on structured illumination[J]. Chinese Journal of Lasers, 48, 0307001(2021).
[7] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).
[8] Xu K, Babcock H P, Zhuang X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton[J]. Nature Methods, 9, 185-188(2012).
[9] Tao Y, Wang X X, Yang F B. Edge detection based on high-pass filter ghost imaging[J]. Laser & Optoelectronics Progress, 57, 021101(2020).
[10] Xiao K, Tian L J, Wang Z Y. Fast super-resolution fluorescence microscopy imaging with low signal-to-noise ratio based on deep learning[J]. Chinese Journal of Lasers, 47, 1007002(2020).
[11] Ma H B, Hu S Y, Jie Y H et al. A floating top-electrode electrowetting-on-dielectric system[J]. RSC Advances, 10, 4899-4906(2020).
[12] Zhou C, Tian T, Gao C et al. Multi-resolution progressive computational ghost imaging[J]. Journal of Optics, 21, 055702(2019).
[13] Yang S C, Yu H, Lu R H et al. Simulation of Fourier-transform ghost imaging using polychromatic X-ray sources[J]. Acta Optica Sinica, 39, 0511003(2019).
[14] Wang C L, Gong W L, Shao X H et al. Influence of receiving numerical aperture and rough target size on ghost imaging via sparsity constraint[J]. Chinese Journal of Lasers, 46, 0810002(2019).
[15] Ma H Y, Sang A J, Zhou C et al. High-efficiency reconstruction of ghost imaging based on equivalent deformation of 2D Walsh transform[J]. Journal of Optics, 22, 125702(2020).
[16] Cai H J, Yao Z H, Gao C et al. Reflection ghost imaging based on superimposed speckle-pattern[J]. Laser & Optoelectronics Progress, 56, 071101(2019).
[17] Wu H, Wang R Z, Li C S et al. Influence of intensity fluctuations on Hadamard-based computational ghost imaging[J]. Optics Communications, 454, 124490(2020).
[18] Liu H C. Imaging reconstruction comparison of different ghost imaging algorithms[J]. Scientific Reports, 10, 14626(2020).
[19] Shapiro J H. Computational ghost imaging[C], IThK7(2009).
[20] Feng W, Zhao X D, Tang S J et al. Compressive computational ghost imaging method based on region segmentation[J]. Laser & Optoelectronics Progress, 57, 101105(2020).
[21] Yu W K, Yao X R, Liu X F et al. Compressive microscopic imaging with“positive-negative”light modulation[J]. Optics Communications, 371, 105-111(2016).
[22] Peng J Z, Yao M H, Cheng J J et al. Micro-tomography via single-pixel imaging[J]. Optics Express, 26, 31094-31105(2018).
[23] Ota S, Horisaki R, Kawamura Y et al. Ghost cytometry[J]. Science, 360, 1246-1251(2018).
[24] Li W W, Tong Z S, Xiao K et al. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints[J]. Optica, 6, 1515-1523(2019).
[25] Zhu X H, Zhou W P, Zhang S H et al. Study on the resolution of microscopic ghost imaging system[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 35, 117-124(2020).
[26] Sun M J, Meng L T, Edgar M P et al. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging[J]. Scientific Reports, 7, 3464(2017).
[27] Lane T J, Ratner D. What are the advantages of ghost imaging? Multiplexing for X-ray and electron imaging[J]. Optics Express, 28, 5898-5918(2020).
[28] Ren Y X, Kong C H, He H S et al. Encrypted wide-field two-photon microscopy with single-pixel detection and compressed sensing[J]. Applied Physics Express, 13, 032007(2020).
[29] Tenne R, Rossman U, Rephael B et al. Super-resolution enhancement by quantum image scanning microscopy[J]. Nature Photonics, 13, 116-122(2019).
Get Citation
Copy Citation Text
Yueshu Feng, Cheng Zhou, Xuan Liu, Xiaohan Liu, Lijun Song. Study of Multi-Resolution Microscopic Correlation Imaging Based on Optimized Hadamard Matrix[J]. Acta Optica Sinica, 2021, 41(21): 2111001
Category: Imaging Systems
Received: Apr. 6, 2021
Accepted: May. 17, 2021
Published Online: Oct. 29, 2021
The Author Email: Song Lijun (ccdxslj@126.com)