Laser & Infrared, Volume. 54, Issue 11, 1751(2024)
Research on the optimal focal length of metalens in the mid-infrared band
[1] [1] Holloway C L, Kuester E F, Gordon J A, et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials[J]. IEEE Antennas & Propagation Magazine, 2012, 54(2): 10-35.
[3] [3] Li X Y, Zhou Y, Ge S Y, et al. Experimental demonstration of optical trapping and manipulation with multifunctional metasurface[J]. Optics Letters, 2022, 47(4): 977-980.
[4] [4] Ren H R, Briere G, Fang X Y, et al. Metasurface orbital angular momentum holography[J]. Nature Communications, 2019, 10: 8.
[5] [5] Yang Y M, Wang W Y, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 2014, 14(3): 1394-1399.
[6] [6] Zhang X D, Kong D P, Liu S J, et al. All-dielectric metasurface with multi-function in the near-infrared band[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 2020, 37(11): 1731-1739.
[7] [7] Zhang X D, Kong D P, Zhao Y, et al. Generation of scalar/vectorial vortex beams by using the plasmonic metasurfaces[J]. Applied Optics, 2022, 61(25): 7336-7342.
[8] [8] Deng J H, Li G X. Nonlinear photonic metasurfaces[J]. Acta Physica Sinica, 2017, 66(14): 17010.
[9] [9] Li S, Wang G, Li X, et al. All-dielectric metasurface for complete phase and amplitude control based on pancharatnam-berry phase and fabry-perot resonance[J]. Applied Physics Express, 2018, 11(10): 105201.
[10] [10] Zhang L, Chen X Q, Liu S, et al. Space-time-coding digital metasurfaces[J]. Nature communications, 2018, 9: 11.
[11] [11] Khorasaninejad M, Capasso F. Metalenses: versatile multifunctional photonic components[J]. Science, 2017, 358(6367): 8.
[12] [12] Lalanne P, Chavel P. Metalenses at visible wavelengths: past, present, perspectives[J]. Laser & Photonics Reviews, 2017, 11(3): 11.
[13] [13] Banerji S, Meem M, Majumder A, et al. Imaging with flat optics: metalenses or diffractive lenses?[J]. Optica, 2019, 6(6): 805-810.
[14] [14] Shrestha S, Overvig A C, Lu M, et al. Broadband achromatic dielectric metalenses[J]. Light-Science & Applications, 2018, 7: 11.
[15] [15] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.
[17] [17] Wang Y J, Chen Q M, Yang W H, et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window[J]. Nature Communications, 2021, 12(1): 7.
[18] [18] Liu F F, Wang D Y, Zhu H, et al. High-efficiency metasurface-based surface-plasmon lenses[J]. Laser & Photonics Reviews, 2023, 17(7): 10.
[19] [19] Wang S M, Wu P C, Su V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8: 9.
[20] [20] Zou Y, Chakravarty S, Chung C J, et al. Mid-infrared silicon photonic waveguides and devices [Invited][J]. Photonics Research, 2018, 6(4): 254-276.
[21] [21] Zhu H, Li Q, Tao C, et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling[J]. Nature Communications, 2021, 12(1): 1805.
[22] [22] Wang Y, Yang Q, He S, et al. Computing metasurfaces enabled broad-band vectorial differential interference contrast microscopy[J]. Acs Photonics, 2022, 10(7): 2201-2207.
[23] [23] Li C, Jang J, Badloe T, et al. Arbitrarily structured quantum emission with a multifunctional metalens[J]. eLight, 2023, 3(1): 19.
[24] [24] Chen Y K, Pu S L, Wang C Z, et al. Voltage tunable mid-wave infrared reflective varifocal metalens via an optomechanic cavity[J]. Optics Letters, 2021, 46(8): 1930-1933.
[25] [25] Shang S, Zhenxing Z, Chen Z, et al. All-dielectric full-color printing with TiO2 metasurfaces[J]. Acs Nano, 2017, 11(5): 4445-4452.
[26] [26] Hu Y, Jiang Y, Zhang Y, et al. Asymptotic dispersion engineering for ultra-broadband meta-optics[J]. Nature Communications, 2023, 14(1): 6649.
[28] [28] Arbabi A, Horie Y, Ball A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature communications, 2015, 6: 6.
[29] [29] Khorasaninejad M, Zhuit A Y, Roques-Carmes C, et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 2016, 16(11): 7229-7234.
[31] [31] Finite-difference time-domain methods[J]. Nature Reviews Methods Primers, 2023, 3(1): 133-146.
[33] [33] Xiao X j, Zhu S n, Li T. Performance analysis of the multiwavelength achromatic metalens[J]. Chinese Optics, 2021, 14(4): 823-830.
Get Citation
Copy Citation Text
WU Xin-peng, ZHANG Xiao-dong, ZHU Xue, SUN Li-hu, LI Ping-ping, YE Guo-yong, JIANG Li-ying. Research on the optimal focal length of metalens in the mid-infrared band[J]. Laser & Infrared, 2024, 54(11): 1751
Category:
Received: Feb. 3, 2024
Accepted: Jan. 14, 2025
Published Online: Jan. 14, 2025
The Author Email: JIANG Li-ying (jiangliying@zzuli.edu.cn)